Get Answers to all your Questions

header-bg qa

The two consecutive sides of a parallelogram are \mathrm{4x + 5y = 0} and \mathrm{7x + 2y = 0}. If the equation of one of the diagonals is \mathrm{11x + 7y = 9}, find the equation of the other diagonal

Option: 1

\mathrm{x-y=0}


Option: 2

\mathrm{x-2y=0}


Option: 3

\mathrm{2x-3y=0}


Option: 4

\mathrm{3x-2y=0}


Answers (1)

best_answer

The sides are \mathrm{4x+5y=0}\: \: \: \: \: \: \: \: \: \: \: ....(1)

and          \mathrm{7x+2y=0}\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ....(2)

Equation of the diagonal, 

\mathrm{11x+7y=9}\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: ....(3)

Solving (1) and (3) co-ordinates of A are

\left(\frac{5}{3},-\frac{4}{3}\right)

Solving (2) and (3) co-ordinates of B are

\left(-\frac{2}{3}, \frac{7}{3}\right)

Mid-point of AB is \mathrm{M\left(\frac{1}{2}, \frac{1}{2}\right)}

\therefore equation of the diagonal OC is

\mathrm{y=x \text { or } x-y=0}

Posted by

Gunjita

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE