Get Answers to all your Questions

header-bg qa

Two perpendicular tangents \mathrm { P A }  and   \mathrm { P B }  are drawn to curve  \mathrm { y^2=k x } , where \mathrm { k }  is maximum value of \mathrm { (2 \sqrt{3} \sin \theta+2 \cos \theta) }  and if  \mathrm { p } is the length of  \mathrm { AB }  satisfying in equation  \mathrm { \log _2 \log _3 \log _4 p<0 }  , then the range of \mathrm { p }  is
 

Option: 1

(0,32)


Option: 2

(0,64)


Option: 3

(4,64)


Option: 4

(4,64)


Answers (1)

best_answer

\mathrm { k=\sqrt{(2 \sqrt{3})^2+(2)^2}=4}
As   \mathrm { AB}  is the focal chord of the parabola \mathrm {y^2=4 x \: \: so\: \: p \geq 4.} 


\mathrm {\therefore Also \log _2 \log _3 \log _4 p<0 \Rightarrow p<64}


\mathrm {\Rightarrow p \in[4,64]}

Posted by

Sanket Gandhi

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE