Get Answers to all your Questions

header-bg qa

Two radioactive sources A and B initially contain equal number of radioactive atoms. Source A has a half-life of 2 hour and source B has a half-life of 4 hours. At the end of 4 hours, the ratio of the rate of disintegration of B to that of A is :

Option: 1

1: 2


Option: 2

2: 1


Option: 3

1: 1


Option: 4

1: 4


Answers (1)

best_answer

Two radioactive nuclei \mathrm{A} and \mathrm{B} initially contain equal number of atoms. The half life is 2 hour and 4 hours respectively. Given, nucleii A and B contain equal number of atoms.

Half-life of  A,\left(\mathrm{~T}_{\frac{1}{2}}\right)_1=2 \mathrm{hr}

Half-life of \mathrm{Y},\left(\mathrm{T}_{\frac{1}{2}}\right)_2=4 \mathrm{hr}

Radio of radioactive sample of A left after 4 hours,

\mathrm{N}_1=\left(\frac{1}{2}\right)^{4 / 2} \mathrm{~N}_0=\frac{1}{4} \mathrm{~N}_0

Radio of radioactive sample of B left after 4 hours,

\mathrm{N}_2=\left(\frac{1}{2}\right)^{4 / 4} \mathrm{~N}_0=\frac{1}{2} \mathrm{~N}_0

Now, decay rate is given by,

\mathrm{R}=\lambda \mathrm{N}=\frac{0.693 \mathrm{~N}}{\mathrm{~T}_{12}}

\Rightarrow \mathrm{R} \propto \frac{\mathrm{N}}{\mathrm{T}_{1 / 2}}

\frac{R_2}{R_1}=\frac{\left(\mathrm{T}_{\frac{1}{2}}\right)_1}{\left(\mathrm{~T}_{\frac{1}{2}}\right)_2} \times \frac{\mathrm{N}_2}{\mathrm{~N}_1}

\text { i.e., }=\frac{R_2}{R_1}=\frac{2}{4} \times \frac{\frac{\mathrm{N}_0}{2}}{\frac{\mathrm{N}_0}{4}}

=1

Posted by

Gaurav

View full answer