Get Answers to all your Questions

header-bg qa

Two spheres of mass 'm' but of densities \rho_{1} and \rho_{2} (\rho_{1}>\rho_{2}) are connected by a string and the combination is immersed in a liquid (\rho_{l}). The tension in the string will be:

Option: 1

\frac{m\rho_{l}g}{2} [\frac{1}{\rho_{1}} - \frac{1}{\rho_{2}}]


Option: 2

m\rho_{l}g [\frac{1}{r_{1}} - \frac{1}{r_{2}}]


Option: 3

\frac{m\rho_{l}g}{2} [\frac{1}{\rho_{2}} - \frac{1}{\rho_{1}}]


Option: 4

m\rho_{l}g [\frac{1}{r_{2}} - \frac{1}{r_{1}}]


Answers (1)

best_answer

 

For the equilibrium,

    T = Fb1 - mg

    T = mg - Fb2

From the above equations, we get:

T = \frac{F_{b1} - F_{b2}}{2}

T = \frac{V_{1} \rho_{lg} - V_{2} \rho_{lg}}{2}

T = \frac{[\frac{m}{\rho_{1}} \rho_{lg} - \frac{m}{\rho_{2}} \rho_{lg}]}{2}

T = \frac{m\rho_{l}g}{2} [\frac{1}{\rho_{1}} - \frac{1}{\rho_{2}}]

Posted by

Divya Prakash Singh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE