Get Answers to all your Questions

header-bg qa

When a car is at rest, its driver sees rain drops falling on it vertically. When driving the car with speed v, he sees that rain drops are coming at an angle 60° from the horizontal. On further increasing the speed of the car to (1+\beta )v, this angle changes to 45°. The value of \beta is close to :
Option: 1 0.50
Option: 2 0.41
Option: 3 0.37  
Option: 4 0.73

Answers (1)

best_answer

\begin{aligned} &\text { Rain is falling vertically downwards. }\\ &\overrightarrow{\mathrm{v}}_{r / \mathrm{m}}=\overrightarrow{\mathrm{v}}_{\mathrm{r}}-\overrightarrow{\mathrm{v}} \end{aligned}

\begin{array}{l} \tan 60^{\circ}=\frac{\mathrm{v}_{\mathrm{r}}}{\mathrm{v}_{\mathrm{m}}}=\sqrt{3} \\ \mathrm{v}_{\mathrm{r}}=\mathrm{v}_{\mathrm{m}} \sqrt{3}=\mathrm{v} \sqrt{3} \\ \text { Now, } \mathrm{v}_{\mathrm{m}}=(1+\mathrm{B}) \mathrm{v} \\ \text { and } \theta=45^{\circ} \\ \tan 45=\frac{\mathrm{v}_{\mathrm{r}}}{\mathrm{v}_{\mathrm{m}}}=1 \\ \mathrm{v}_{\mathrm{r}}=\mathrm{v}_{\mathrm{m}} \\ \mathrm{v} \sqrt{3}=(1+\beta) \mathrm{v} \\ \sqrt{3}=1+\beta \\ \Rightarrow \beta=\sqrt{3}-1=0.73 \end{array} 

 

Posted by

Deependra Verma

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE