Get Answers to all your Questions

header-bg qa

 When a certain metal surface is illuminated with light of frequency \nu, the stopping potential for photoelectric current is \mathrm{V}_0. When the same surface is illuminated by light of frequency \frac{\nu}{2} the stopping potential is \frac{\mathrm{V}_0}{4}. The threshold frequency for photoelectric emission is:
 

Option: 1

\frac{\nu}{6}


Option: 2

\frac{\nu}{3}


Option: 3

\frac{2 \nu}{3}


Option: 4

\frac{4 \nu}{3}


Answers (1)

best_answer

According to Einstein's photoelectric equation \mathrm{K}_{\max }=\mathrm{h\nu}-\phi_0

Where \mathrm{\nu} is the incident frequency and \phi_0 is the work function of the metal.

As  \mathrm{K}_{\max }=\mathrm{eV}_0

Where \mathrm{V}_0  is the stopping potential.

 \therefore \mathrm{eV}_0=\mathrm{h\nu}-\phi_0 \quad \quad \quad \quad \quad \dots(i)

and \mathrm{e} \frac{\mathrm{V}_0}{4}=\mathrm{h} \frac{\mathrm{\nu}}{2}-\phi_0 \quad \quad \quad \quad \quad \dots(ii)

From (i) and (ii), we get

\frac{\mathrm{h\nu}}{4}-\frac{\phi_0}{4}=\frac{\mathrm{h\nu}}{2}-\phi_0 \quad \text{ or }\ \ \ \phi_0-\frac{\phi_0}{4}=\frac{h \nu}{2}-\frac{h \nu}{4}
\frac{3}{4} \phi_0=\frac{\mathrm{h\nu}}{4} \quad \text{ or }\quad \phi_0=\frac{\mathrm{h\nu}}{3}

\therefore Threshold frequency,

\mathrm{\nu}_0=\frac{\phi_0}{\mathrm{~h}}=\frac{\mathrm{h\nu}}{3} \times \frac{1}{\mathrm{~h}}=\frac{\mathrm{\nu}}{3}

Posted by

Gunjita

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE