# Q&A - Ask Doubts and Get Answers

Sort by :
Clear All
Q

What is the molar solubility of $Al\left ( OH \right )_{3}$ in $0.2M\: \: \: \: NaOH$ solution? Given that, solubility product of $Al\left ( OH \right )_{3}=2.4\times 10^{-24}:$

• Option 1)

• Option 2)

• Option 3)

• Option 4)

Solubility and K{H} values - Gases having more values will have less solubility. -         Option 1)Option 2)Option 3)Option 4)

$1\; g$ of a non-volatile non-electrolyte solute is dissolved in $100 \; g$ of two different solvents $A$ and $B$ whose ebulliscopic constants are in the ratio of $1:5$. The ratio of the elevation in their boiling points,$\frac{\Delta T_{b}\left ( A \right )}{\Delta T_{b}\left ( B \right )},$ is :

• Option 1)

$5:1$

• Option 2)

$10:1$

• Option 3)

$1:5$

• Option 4)

$1:0.2$

given  ------------------------(1)                                                                                   -------------------------(2)                        Option 1)Option 2)Option 3)Option 4)

Molal depression constant for a solvent is $4.0\:\:K\:kg\:mol^{-1}$. The depression in the freezing point of the solvent for $0.03\:\:\:mol\:kg^{-1}\:\:solution\:\:of\:\:K_{2}SO_{4}$  is :

( Assume complete dissociation of the electrolyte )

• Option 1)

$0.18\:K$

• Option 2)

$0.24\:K$

• Option 3)

$0.12\:K$

• Option 4)

$0.36\:K$

Depression in freezing point - -     Mathematical Expression of Depression in Freezing point -   - wherein m = molarity of solvent  = cryoscopic  constant     molal depress const Units =     Vant Hoff factor (i) - In case of electrolytes the observed colligative property is different from theoritical colligative property. There ratio is defined by Vant Haff factor - wherein...

The osmotic pressure of a dilute solution of an ionic compound $XY$ in water is four times that of a solution of $0.01 \; M$ $BaCl_{2}$ in water. Assuming complete dissociation of the given ionic compounds in water, the concentration of $XY\left ( in \; mol\; L\; ^{-1} \right )$ in solution is :

• Option 1)

$4\times 10^{-2}$

• Option 2)

$6\times 10^{-2}$

• Option 3)

$4\times 10^{-4}$

• Option 4)

$16\times 10^{-4}$

Given,        Option 1)                   Option 2)   Option 3)   Option 4)

Liquid $'M'$ and liquid $'N'$ form an ideal solution. The vapour pressures of pure liquids $'M'$ and $'N'$ are $450$ and $700 \; mmHg$, respectively, at the same temperature. Then correct statement is :

$\left ( x_{M}=Mole\; fraction \; of\; 'M' \; in\; solution;$

$x_{N}=Mole\; fraction \; of\; 'N' \; in\; solution;$

$y_{M}=Mole\; fraction \; of\; 'M' \; in\; vapour\; phase;$

$y_{N}=Mole\; fraction \; of\; 'N' \; in\; vapour\; phase )$

• Option 1)

$\frac{x_{M}}{x_{N}}=\frac{y_{M}}{y_{N}}$

• Option 2)

$\left ( x_{M}-y_{M} \right )< \left ( x_{N}-y_{N} \right )$

• Option 3)

$\frac{x_{M}}{x_{N}}< \frac{y_{M}}{y_{N}}$

• Option 4)

$\frac{x_{M}}{x_{N}}> \frac{y_{M}}{y_{N}}$

More volatile component will have greater composition in vapour phase as compared to it's composition in liq.phase The vapour phase of pure liq.  &  are  of  and  of   respectively           ( more volatile) Option 1)             Option 2) Option 3)    Option 4)

For the solution of the gases, w,x,y and z in water at 298 K, the henry's law constants (KH) are 0.5,2,35 and 40 kbar, respectively. The correct plot for the given data is

• Option 1)

• Option 2)

• Option 3)

• Option 4)

Option 1)Option 2)Option 3)Option 4)

The vapour pressures of pure liquids $A$ and $B$ are $400$ and $600$ mmHg, respectively at $298 K.$ On mixing the two liquids, the sum of their initial volumes is equal to the volume of the final mixture.  The mole fraction of liquids $B$ is $0.5$ in the mixture. The vapour pressure of the final solution, the mole fractions of components $A$ and $B$ in vapour phase, respectively are :

• Option 1)

$450\; mmHg,0.5,0.5$

• Option 2)

$450\; mmHg,0.4,0.6$

• Option 3)

$500\; mmHg,0.4,0.6$

• Option 4)

$500\; mmHg,0.5,0.5$

mole fraction of A in vapour phase Option 1)Option 2)Option 3)  Option 4)

The molar solubility of $Cd(OH)_{2}$ is $1.84\times 10^{-5}M$ in water. The expected solubility of $Cd(OH)_{2}$ in a buffer solution of pH = 12 is :

• Option 1)

$1.84\times 10^{-9}M$

• Option 2)

$\frac{2.49}{1.84}\times 10^{-9}M$

• Option 3)

$6.23\times 10^{-11}M$

• Option 4)

$2.49\times 10^{-10}M$

of                                  S               2S+    2S - > this OH comes from dissociation of      - > this OH comes from a buffer                                        Given                            Option 1)      Option 2)Option 3)Option 4)

A solution is prepared by dissolving 0.6 g of urea (molar mass =60g $mol^{-1}$ ) and 1.8 g of glucose (molar mass = 180 g $mol^{-1}$ ) in 100 mL of water at $27^{\circ}C$. The osmotic pressure of the solution is:

(R=0.08206 L atm $K^{-1}mol^{-1})$

• Option 1)

8.2 atm

• Option 2)

2.46 atm

• Option 3)

4.92 atm

• Option 4)

1.64 atm

molar of Urea                                                      Given Water = 100ml molar of glucose =                                                   Temp = 300 k Total moles =  Osmotic pressure =  Option 1)8.2 atmOption 2)2.46 atmOption 3)4.92 atmOption 4)1.64 atm

The freezing point of a diluted milk sample is found to be $-0.2^{0}C$ , while it should have been $-0.5^{0}C$ for pure milk. How much water has been added  to pure milk  to make the diluted sample ?

• Option 1)

2 cups of water to 3 cups of pure milk.

• Option 2)

3 cups of water to 2 cups of pure milk.

• Option 3)

1 cup of water to 3 cups of pure milk.

• Option 4)

1 cup of water to 2 cups of pure milk.

Depression in freezing point - -       Freezing -  Freezing  occurs when liquid solvent is in equilibrium with solid solvent. As non volatile solute decreases, the vapour pressure freezing point decreases. -As we knoew that Freezing point of milk Freezing point of milk (diluted)      Option 1)2 cups of water to 3 cups of pure milk.Option 2)3 cups of water to 2 cups of pure milk.Option 3)1...

Among the colloids cheese (C), milk (M) and smoke (S), the correct combination of the dispersed phase and dispersion medium, respectively is :

• Option 1)

C : liquid in solid ; M : Liquid in Solid ; S solid in gas

• Option 2)

C : liquid in solid ; M : Liquid in liquid ; S : solid in gas

• Option 3)

C : solid in liquid  ; M : Liquid in Liquid ; S : solid in gas

• Option 4)

C : solid in liquid  ; M : Solid in liquid; S : solid in gas

Types of solutions - a)    Liquid solute and Liquid solvent b)    Solid solute and Liquid solvent c)    Gaseous solute and Liquid solvent d)    Solid solute and Solid solvent e)    Liquid solute and Solid solvent f )    Gaseous solute and Solid solvent g)    Solid solute and Gaseous solvent h)    Liquid solute and Gaseous solvent i)     Gaseous solute and Gaseous solvent -       Solutions - A...

$K_{2}HgI_{4}$ is 40 % ionised in aqueous solution.

The value of its van't Hoff factor (i) is :

• Option 1)

2.2

• Option 2)

1.8

• Option 3)

2.0

• Option 4)

1.6

Vant Hoff factor (i) - In case of electrolytes the observed colligative property is different from theoritical colligative property. There ratio is defined by Vant Haff factor - wherein       Vant Hoff factor for dissociation - Where is the no. of dissociated particles degree of dissociation   - wherein       Vant Hoff factor for Association - number of particles associated ...

If $K_{sp}$ of $Ag_{2}CO_{3}$ is $8 \times 10^{-12}$, the molar solubility of $Ag_{2}CO_{3}$ in 0.1 M $AgNO_{3}$ is :

• Option 1)

$8 \times 10^{-11}$ M

• Option 2)

$8 \times 10^{-12}$

• Option 3)

$8 \times 10^{-10}$

• Option 4)

$8 \times 10^{-13}$ M

Relation between concentration terms (Molality & Mole fraction) - - wherein         Relation between concentration terms (Molality & Molarity) - - wherein As we have learned in solution The reaction is      Option 1) M  Option 2) M Option 3) M Option 4) M

Elevation in the boiling point for 1 molal solution og glucose is 2 K .the depression inthe freezing point for 2molal solution of glucose in the same solvent is 2  ,K.the relatin between Kb and Kfis:

• Option 1)

Kb = Kf

• Option 2)

Kb =1.5 Kf

• Option 3)

Kb =0.5 Kf

• Option 4)

Kb =2 Kf

Mathematical Expression - Unis of   - wherein     Mathematical Expression of Depression in Freezing point -   - wherein m = molarity of solvent  = cryoscopic  constant     molal depress const Units =   As we have learned The change in Tb and Tf . Option 1)Kb = KfOption 2)Kb =1.5 KfOption 3)Kb =0.5 KfOption 4)Kb =2 Kf

A mixture of 100 m mol of $Ca(OH)_{2}$ and 2 g of sodium sulphate was dissolved in water and the volume was made up to 100 mL .The mass of calcium sulphate formed and the concentration of $OH^{-}$ in resulting solution , respectively , are  : (Molar mass of  $Ca(OH)_{2}$  ,$Na_{2}SO_{4} \: and \: \: CaSO_{4}$ are 74, 143 and 136 g $mol^{-1}$ , respectively ; $K_{sp} \: \: of\: \: Ca(OH)_{2}\: \: is\: \: 5.5\times 10^{-6}$)

• Option 1)

$1.9\: g,\: \: 0.28\: mol\: L^{-1}$

• Option 2)

$13.6g,\: \: 0.28\: molL^{-1}$

• Option 3)

$1.9g,\: \: 0.14molL^{-1}$

• Option 4)

$13.6g,\: \: 0.14molL^{-1}$

@    Mole Fraction - - As we have learned in mole concept . The reaction is -       Vapour Pressure - It is defined as pressure exerted by vapours on liquid surface at equilibrium and condensation. -        Raoult's Law - The partial pressure of any volatile constituents of a solution at a given temperature is equal to the product of vapour pressure of pure constituent and its mole fraction...

Liquids A and B form an ideal solution in the entire composition range . At 350 K , the vapor pressures of pure A and pure B are$7\times 10^{3}Pa\: \: and\: \: 12\times 10^{3}Pa$ , respectively . The composition of the vapor in equilibrium with a solution containing 40 mol percent of A at this temperature is :

• Option 1)

$x_{A}=0.37; \: x_{B}=0.63$

• Option 2)

$x_{A}=0.28; \: x_{B}=0.72$

• Option 3)

$x_{A}=0.4; \: x_{B}=0.6$

• Option 4)

$x_{A}=0.76; \: x_{B}=0.24$

Mole Fraction - -     Vapour Pressure - It is defined as pressure exerted by vapours on liquid surface at equilibrium and condensation. -       Negative deviation from Raoult's Law behaviour - When the pressure exerted by vapours of mixture is less than that in case of ideal behaviour. - wherein       Factors affecting vapour pressure - - wherein It depends only on temperature and nature...

A solution containg 62 g ethylene glycol in 250 g water is cooled to $-10^{0}C$ . If $K_{f}$ for water is 1.86  K kg $mol^{-1}$, the amount of water (in g ) separated as ice  is:

• Option 1)

16

• Option 2)

32

• Option 3)

48

• Option 4)

64

Dependence of K_{f} - -     Solutions - A homogeneous mixture of solute and solvent present in same phase. - wherein Eg. Nacl in H2O     Definition of Boiling - Boiling occurs at the temperature when the vapour pressure of liquid becomes equal to external atmospheric pressure - wherein Boiling point of pure liquid is fixed. The formula :    Option 1)16Option 2)32Option 3)48Option 4)64

Which one of the following statement regarding Henry's law is not corret?

• Option 1)

Higher the value of $K_{H}$ at a given pressure , higher is the solubility of the gas in the liquids.

• Option 2)

Different gases have different $K_{H}$ (Henry's law constant) value at the same tempreture

• Option 3)

The partial pressure of the gas in vapour phase is prootional to the mole fraction of the gas in the  solution

• Option 4)

The value of $K_{H}$ incerases with increase of temperature and $K_{H}$is function of the nature of the gas

Henry's Law - It decides the solubility of gases in liquids. = mole fraction of gas in liquid. = Partial pressure of gas over liquid surface. -as we know that , (liquid solution) more is KH then less will be solublity,lesser the solublity is at higher temperture so more is temperture more will be KH    Option 1)Higher the value of at a given pressure , higher is the solubility of the gas...
Engineering
87 Views   |

For an ideal solution of two components A and B, which of the following is true ?

• Option 1)

Hmixing < 0 (zero)

• Option 2)

Hmixing > 0 (zero)

• Option 3)

A-B interaction is stronger than
A-A and B-B interactions

• Option 4)

A-A, B-B and A-B interactions
are identical

As we have learnt,   Condition of ideality - Interaction between A - A; B - B are similar to A - B Interactions. eg. Hexane + Heptone Benzene + Toluere - wherein       Fact. Option 1)  Hmixing < 0 (zero)                 Option 2) Hmixing > 0 (zero)                           Option 3)  A-B interaction is stronger than           A-A and B-B interactions          Option 4) A-A, B-B and...
Engineering
102 Views   |

Osmotic pressure of a solution containing 0.1 mole of solute per litre at 273K is (in atm)

• Option 1)

$\frac{0.1}{1}\times 0.08205\times 273$

• Option 2)

$0.1\times 1\times 0.08205\times 273$

• Option 3)

$\frac{1}{0.1}\times 0.08205\times 273$

• Option 4)

$\frac{0.1}{1}\times \frac{273}{0.08205}$

As we learned    Mathematical Expression for Osmotic Pressure -   - wherein Representation of osmotic pressure.       Option 1)       Option 2) Option 3) Option 4)
Exams
Articles
Questions