## Filters

Sort by :
Clear All
Q

Let and be the roots of equation is equal to:

• Option 1)

6

• Option 2)

-6

• Option 3)

3

• Option 4)

-3

3

All the pairs ( x, y ) that satisfy the inequality

also satisfy the equation :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

=>  &  So, correct option is (4). Option 1) Option 2) Option 3) Option 4)

If  are three consecutive terms of a non-constant

G.P. such that the equations   and

have a common root , then  is equal to :

• Option 1)

0

• Option 2)

• Option 3)

• Option 4)

are in G.P. =>  For equation,                  Hence, roots are equal & equals to  Since, given equation have common roots , hence   must be root of                     Option 1) 0 Option 2) Option 3) Option 4)

If  are in A.P. such that ,

then the sum of the first 15 terms of this A.P. is :

• Option 1)

200

• Option 2)

280

• Option 3)

120

• Option 4)

150

Given ,                 ..................(1) We have to find out , ..............(2) Substituting the value of (1) in (2), Option 1)200Option 2)280Option 3)120Option 4)150

Let   with   and  it satisfies

for some natural number n . Then :

• Option 1)

n = 20 and Re(z) = -10

• Option 2)

n = 40 and Re(z) = 10

• Option 3)

n = 40 and Re(z) = -10

• Option 4)

n = 20 and Re(z) = 10

,  ,  Option 1)  n = 20 and Re(z) = -10 Option 2)  n = 40 and Re(z) = 10 Option 3)  n = 40 and Re(z) = -10 Option 4)  n = 20 and Re(z) = 10

A group of students comprises of 5 boys and n girls. If the number of ways, in which a team of 3 students can randomly be selected from this group such that there is at least one boy and at least one girl in each team, is 1750, then n is equal to :

• Option 1)

28

• Option 2)

27

• Option 3)

25

• Option 4)

24

atleast one boy & one girl :  ( 1B & 2G) + ( 2B & 1G)   As, n cannot be -ve so, n = 25 Option 1) 28 Option 2) 27 Option 3) 25 Option 4) 24

If  is the inverse of a  matrix A, then the sum of all values of  for which det  is :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

Option 1) Option 2) Option 3) Option 4)

The equation  represents :

• Option 1)

• Option 2)

• Option 3)

the line through the origin with slope

• Option 4)

the line through the origin with slope

The line through the origin with slope 1Option 1)a circle of radius .  Option 2)a circle of radius Option 3)the line through the origin with slope Option 4)the line through the origin with slope

if  are roots of the equation  then  is equal to :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

Option 1) Option 2) Option 3) Option 4)

Let Sn denote the sum of the first terms of an A.P.. If  and  then  is equal to :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

So (2) - (1)                                    Option 1) Option 2) Option 3) Option 4)

Let  be an A.P. with  . Then the

common difference of this A.P., which maximises the product

, is :

• Option 1)

• Option 2) • Option 3)

• Option 4)

Assuming the first term of A.P. is a and difference is d. Then, Let  =>  So,  will be maximum at  So, option (2) is correct. Option 1) Option 2) Option 3) Option 4)

Let a,b and c be in G.P. with common ratio r , where  and

. If  3a , 7b and 15c are the first three terms of an A.P.,

then the 4th term of this A.P. is :

• Option 1)

• Option 2)

5 a

• Option 3)

• Option 4)

a

Since a,b,c are in G.P. with common ratio r then  b = ar ,  Also 3a, 7b and 15c are in A.P. =>  =>  =>  =>  =>  =>  =>  So, terms are                         or                         =>    or    So, 4th term     or    So, option (4) is correct.   Option 1) Option 2) 5 a Option 3) Option 4) a

The sum of the real roots of the equation

, is equal to :

• Option 1)

6

• Option 2)

0

• Option 3)

1

• Option 4)

-4

=>  =>  Root of equation (-3,1,2) So, Sum of real root of equation = -3+1+2=0 So, option (2) is correct.Option 1)6Option 2)0Option 3)1Option 4)-4

If  and  are two complex numbers such that

and   then :

• Option 1) • Option 2)

• Option 3)

• Option 4)

and  Let    =>                                                                  Option 1)Option 2)Option 3)Option 4)

The sum

is equal to :

• Option 1)

620

• Option 2)

1240

• Option 3)

1860

• Option 4)

660

So, option (1) is correct.   Option 1) 620 Option 2) 1240 Option 3) 1860 Option 4) 660

The sum

upto 10th term , is :

• Option 1)

680

• Option 2)

600

• Option 3)

660

• Option 4)

620

Given, general term will be                                                               So, correct option is (3).Option 1)680Option 2)600Option 3)660Option 4)620

If  and  are the roots of the quadratic equation,

, then

is equal to :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

and  are the roots of the equation  Now,                                                                                                                                                                   correct option (2) Option 1) Option 2) Option 3) Option 4)

If a>0 and  , has magnitude  ,

then  is equal to :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

given that  Option (1) is correct. Option 1) Option 2) Option 3) Option 4)

If  are in A.P. and ,

then  is equal to :

• Option 1)

98

• Option 2)

76

• Option 3)

38

• Option 4)

64

correct option is (2). Option 1) 98 Option 2) 76 Option 3) 38 Option 4) 64

The sum of the series   term is :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

Option 1) Option 2) Option 3) Option 4)
Exams
Articles
Questions