Q&A - Ask Doubts and Get Answers

Clear All
Chain Rule is one of the most important concepts in Differentiations That's why we will discuss it in upcoming concepts till then you can take some basic idea of this concept Thanking You !!
Case 1 :                  Case 2 :                =>    correct option (2)     Option 1) Option 2) Option 3) Option 4)
 has exterme points at  So,  at    we can write   given that                                                Option 1) four irrational numbers. Option 2) four rational numbers. Option 3) two irrational and two rational numbers. Option 4) two irrational and one rational number.
Find shortest distance   the tangent at point P is parallel to So putiing the value of in curve                                              Shortest distance between two parallel lines or perpendicular distance from       Option 1) Option 2) Option 3)   Option 4)
  Indeterminate forms - The form   are known as indeterminate form means they do not exist directly -     L - Hospital Rule - - wherein Given  and    This is in the form of L.D.E I.F. =        =  Now, So,  Option 1)exists and equals 0Option 2)does not existOption 3)exist and equals Option 4)exists and equals 4
# Engineering
It is not a function of only x- variable.    if we want to find differentiation of this function,we need partial differentiation w.r.t (x).      Hence, Final answer will be .
# Engineering
As we have learned Lagrange's mean value theorem - If  a  function  f(x)  1.   is continuous in the closed interval [a,b] and  2.   is differentiable in the open interval [a, b] then  -   (A),(C), (D) are discontinous in [1,2] but (B) satisfies all condition of L.M.V.T           Option 1) Option 2) Option 3) Option 4)
# Engineering
As we have learned Length of Tangent - - wherein Where      Length of tangent at (x,y)   Length =            Option 1) 1 Option 2) 2 Option 3) 3 Option 4) 4
# Engineering
As we have learned Properties of differentiable functions - The composition of a differentiable function is a differentiable functions. -      is composition of sin x with sin x so it will  be diffrentiable      is compostion of  with  (both diffrentiable ) so it will be also diffrentiable    so sum of two diffrentiable function will also be diffrentiable for all            Option 1) 0 Option...
# Engineering
As we have learned Irremovable discontinuity - A function f is said to possess irremovable discontinuity if at  x = a the left hand limit is not equal to the right hand limit so limit does not exist   -     Limit doesn't exist  , f(x) has irremovable discontinuty , so ffor no 'k' it will be continous     Option 1) If k= 1 , f(x ) becomes continous at x= 0 Option 2) If k= -1 , f(x ) becomes...
# Engineering
As we have learned Removal discontinuity - A function  f is said to possess removable discontinuity if at x = a :     - wherein       f(0)=1 Limit exists but  not equal to f(0)  removable discontinuity at x= 0       Option 1) f(x ) is continous at x= 0 Option 2) f(x) has non - exsiting limit at x= 0   Option 3) f(x) has LHL=RHL = f(0) Option 4) f(x) has removable discontinuty at x=0
# Engineering
As we learnt in  Differentiation - Derivative  of a function  f(x) is defined as  f'(x) means  small increment    in x  corresponding increment in the value of y  be   - wherein               Now, Now, Put x=-1 From (i) and (ii) it is zero Option 1) This option is incorrect Option 2) 0 This option is correct Option 3) 1 This option is incorrect Option 4) This option is incorrect
# Engineering
As we learnt in Condition for differentiable - A function  f(x) is said to be differentiable at    if      both exist and are equal otherwise non differentiable -      and      So f(x) is continuous at x = 0   So, g(x) is differentiable at        Option 1)  Both statements I and II are false.     This option is incorrect. Option 2)  Both statements I and II are true. This option is...