## Filters

Sort by :
Clear All
Q
1560259998516566813835.jpg @Vinod

View More

If

Where C is a constant of integration , then :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

put              correct option is (1)    Option 1) Option 2) Option 3) Option 4)

If the area ( in sq. units) bounded by the parabola  and

the line  ,  , is  , then  is equal to :

• Option 1)

• Option 2)

48

• Option 3)

24

• Option 4)

the parabola  and  the line  If , then Area =          =>         =>        =>         =>          =>       Option 1) Option 2) 48 Option 3) 24 Option 4)

Let  be fixed. If the integral   A(x)  , where C is a constant of integration, then the functions A(x) and B(x) are respectively :

• Option 1)

and

• Option 2)

and

• Option 3)

and

• Option 4)

and

I =   comparing with LHS    Option 1)  and          Option 2)  and   Option 3)  and  Option 4)  and

A value of  such that

is :

• Option 1)

-2

• Option 2)

• Option 3)

• Option 4)

2

using partial fractions, & Option 1) -2      Option 2) Option 3) Option 4) 2

The integral  is equal to : (Here C is a constant of integration)

• Option 1)

• Option 2)

• Option 3)

• Option 4)

Option 1) Option 2) Option 3)   Option 4)

If the area (in sq. units) of the region  is , then  is equal to :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

Option 1)Option 2)Option 3)Option 4)

If , then   is equal to :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

So,          and      Option 1) Option 2) Option 3) Option 4)

The integral  is equal to :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

Let  =>                                            So, option (3) is correct. Option 1) Option 2) Option 3) Option 4)

If , where C is a constant

of integration, then  is equal to :

• Option 1)

-1

• Option 2)

1

• Option 3)

• Option 4)

Let          Integrating by parts    =>  =>                      So, option (3) is correct.     Option 1) -1 Option 2) 1 Option 3) Option 4)

The area ( in sq. units ) of the region bounded by the curves  and

, in the first quadrant is :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

and    The required area is  So, option (4) is correct.   Option 1) Option 2) Option 3) Option 4)

is equal to :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

=>  =>  =>  option (1) is correct. Option 1) Option 2) Option 3) Option 4)

The region represented by  and  is

bounded by a :

• Option 1)

square of side length  units

• Option 2)

rhombus of side length 2 units

• Option 3)

square of area 16 sq. units

• Option 4)

rhombus of area  sq. units

region bounded by  and  Graph of this is    Area = 8 side =     option (1) is correct. Option 1) square of side length  units Option 2) rhombus of side length 2 units Option 3) square of area 16 sq. units Option 4) rhombus of area  sq. units

The value of , where  denotes

greatest integer function, is :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

.....................(1)    ..............................(2) Add (1) and (2)           So, option (2) is correct. Option 1) Option 2) Option 3) Option 4)

The area ( in sq. units ) of the region   is :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

required are     Option 1) Option 2) Option 3) Option 4)

If        , then a possible choice of   is  :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

differentiating both sides  Option 1) Option 2) Option 3) Option 4)

If    is a differentiable function and    , then    is :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

Option 1) Option 2) Option 3) Option 4)

The value of the integral

is :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

Option 1) Option 2) Option 3) Option 4)

The area (in sq. units) of the region   is :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

Point of intersection of  and                                         and                                                      Required Area,                                                                                                                  Option 1) Option 2) Option 3)   Option 4)

The value of      is :

• Option 1)

• Option 2)

• Option 3)

• Option 4)

Option 1)          Option 2) Option 3)   Option 4)
Exams
Articles
Questions