Get Answers to all your Questions

header-bg qa

An electron moving in a circular orbit of radius r makes n rotations per second. The magnetic field produced at the centre has magnitude:

Option: 1

Zero


Option: 2

\frac{\mu_0 \mathrm{n}^2 \mathrm{e}}{\mathrm{r}}


Option: 3

\frac{\mu_0 \mathrm{r} e}{2 \mathrm{r}}


Option: 4

\mathrm{\frac{\mu_0 \mathrm{ne}}{2 \pi r}}


Answers (1)

best_answer

Radius of circular orbit =r
No. of rotations per second =n i.e., T=1 / n

Magnetic field at its centre, \mathrm{B}_{\mathrm{c}}= ?
As we know, current
\mathrm{i}=\frac{\mathrm{e}}{\mathrm{T}}=\frac{\mathrm{e}}{\left(\frac{1}{\mathrm{n}}\right)}=\mathrm{en}=    equivalent current
Magnetic field at the centre of circular orbit,
\mathrm{B}_{\mathrm{c}}=\frac{\mu_0 \mathrm{i}}{2 \mathrm{r}}=\frac{\mu_0 \mathrm{ne}}{2 \mathrm{r}}.
 

Posted by

Nehul

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks