Get Answers to all your Questions

header-bg qa

The ratio of the specific heats \frac{C_p}{C_v}= \gamma in terms of degrees of freedom (n)  is given by:

  • Option 1)

    (1+\frac{1}{n})

  • Option 2)

    (1+\frac{n}{3})

  • Option 3)

    (1+\frac{2}{n})

  • Option 4)

    (1+\frac{n}{2})

 

Answers (1)

 

Specific heat capacity at constant pressure -

C_{p}= C_{v}+R

= left ( frac{f}{2}+1 
ight )R

- wherein

f = degree of freedom

R= Universal gas constant

 

 

Specific heat of gas at constant volume -

C_{v}= frac{fR}{2}

- wherein

f = degree of freedom

R= Universal gas constant

 

 C_{p}=\left ( \frac{n}{2} +1\right)

n= degree of freedom

C_{v}=\frac{nR}{2}

\therefore \frac{C_{p}}{C_{v}}=\frac{\left ( \frac{n}{2}+1 \right )R}{\frac{nR}{2}}

1+\frac{2}{n}

r=1+\frac{2}{n}


Option 1)

(1+\frac{1}{n})

Option 2)

(1+\frac{n}{3})

Option 3)

(1+\frac{2}{n})

Option 4)

(1+\frac{n}{2})

Posted by

Vakul

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks