Get Answers to all your Questions

header-bg qa

Two bodies of masses \mathrm{\mathrm{m}\: and \: \mathrm{M}} are placed a distance \mathrm{d} apart. The gravitational potential at the position where the gravitational field due to them is zero is \mathrm{V}.
 

Option: 1

\mathrm{\quad V=-\frac{G}{d}(m+M)}

 


Option: 2

\mathrm{\quad V=-\frac{G m}{d}}
 


Option: 3

\mathrm{\mathrm{V}=-\frac{\mathrm{GM}}{\mathrm{d}}}
 


Option: 4

\mathrm{\quad V=-\frac{G}{d}(\sqrt{m}+\sqrt{M})^2}


Answers (1)

best_answer

Let gravitational field be zero at a point lying at distance \mathrm{x} from \mathrm{M}. Then,

\mathrm{ \frac{G M}{x^2}=\frac{G m}{(d-x)^2} }

\mathrm{ \Rightarrow \frac{d-x}{x}=\sqrt{\frac{m}{M}} }

\mathrm{ \Rightarrow \frac{d}{x}-1=\sqrt{\frac{m}{M}} }

\mathrm{ \Rightarrow x=\left(\frac{\sqrt{M}}{\sqrt{M}+\sqrt{m}}\right) d }                  ..............(1)

\mathrm{\Rightarrow(d-x)=\left(\frac{\sqrt{M}}{\sqrt{M}+\sqrt{m}}\right) d }        ..............(2)

Since, \mathrm{V_p=-\frac{G m}{d-x}-\frac{G m}{x}}                  .............(3)

Substituting (1) and (2) in (3), we get

\mathrm{ V_p=-\frac{G}{d}(\sqrt{m}+\sqrt{M})^2 }

Hence option 4 is correct.
 

Posted by

shivangi.bhatnagar

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks