A sample space consists of 9 elementary outcomes e1, e2, ..., e9 whose probabilities are
P(e1) = P(e2) = .08, P(e3) = P(e4) = P(e5) = .1
P(e6) = P(e7) = .2, P(e8) = P(e9) = .07
Suppose A = {e1, e5, e8}, B = {e2, e5, e8, e9}
(a) Calculate P (A), P (B), and P (A ∩ B)
(b) Using the addition law of probability, calculate P (A ∪ B)
(c) List the composition of the event A ∪ B, and calculate P (A ∪ B) by adding the probabilities of the elementary outcomes.
(d) Calculate P () from P (B), also calculate P () directly from the elementary outcomes of
Given data:
S = {e1, e2, e3, e4, e5, e6, e7, e8, e9}
A = {e1, e5, e8}
B = { e2, e5 e8, e9}
P (e1) = P (e2) = 0.08
P (e3) = P (e4) = P (e5) = 0.1
P (e6) = P (e7) = 0.2
P (e8) = P (e9) = 0.07
A = {e1, e5, e8} …….. (given)
Thus,
P (A) = P (e1) + P (e5) + P (e8)
= 0.08 + 0.1 + 0.07
= 0.25
Now, B = { e2, e5 e8, e9} ……. (given)
P (B) = P (e2) + P (e5) + P (e8) + P (e9)
Now, P (A ∩ B)
A ∩ B = {e5, e8}
Thus, P (A ∩ B) = P (e5) + P (e8)
= 0.1 + 0.07
= 0.17
P (A) = 0.25
P (B) = 0.32
P (A ∩ B) = 0.17
Now, P (A U B) = P (A) + P (B) – P (A ∩ B) ……. (by general addition rule)
= 0.25 + 0.32 – 0.17
= 0.40
(c) A = {e1, e5, e8}
B = { e2, e5 e8, e9} ……. (given)
Thus, A U B = {e1, e2, e5, e8, e9}
Thus, P (A U B) = P (e1) + P (e2) + P (e5) + P (e8) + P (e9)
= 0.08 + 0.08 + 0.1 + 0.07 + 0.07
= 0.40
(d) P ()
P () = 1 – 0.32
= 0.68
Now, we have,
B = { e2, e5 e8, e9}
Thus, = { e1, e3, e4, e6, e7}
P () = P (e1) + P (e3) + P (e4) + P (e6) + P (e7)
= 0.08 + 0.1 + 0.1 + 0.2 +0.2
= 0.68