Get Answers to all your Questions

header-bg qa

Assume the dipole model for earth’s magnetic field B which is given by BV = vertical component of magnetic field

 =\frac{\mu _{0}}{ 4 \pi}\frac{2m \cos \theta }{r^{3}}

BH = Horizontal component of magnetic field

 =\frac{\mu _{0}}{ 4 \pi}\frac{ \sin \theta m }{r^{3}}
\theta = 90^{\circ}– latitude as measured from magnetic equator.
Find loci of points for which (i) B is minimum; (ii) dip angle is zero; and (iii) dip angle is \pm 45^{\circ}


 

Answers (1)

(a)B_v=\mu _{0}2m\frac{\cos \theta}{ 4\pi r^3 }

B_H=\frac{\mu _{0}}{4 \pi}\frac{m\sin \theta}{ r^{3} }

  These are the components of B to a net magnetic field will be 

B=\sqrt{B_v^2+ B_H^2}=\frac{\mu_{0}m}{4\pi r^3}[3\cos 2 \theta +1]^{\frac{1}{}2}

 From the above equation, the value of B is minimum, if

 \cos \theta =\frac{\pi}{}2

 \theta =\frac{\pi}{}2

  Thus, B is minimum at the magnetic equator.  

 (b) Angle of dip

 \tan \delta =\frac{B_v}{B_H}=\frac{\mu _{0}}{4 \pi }\frac{.2m \frac{\cos \theta }{r^3}}{\frac{\mu _{0}}{4\pi }\sin \theta .\frac{m}{r^{3}}} =2\cot \theta .........i

\tan \delta =2\cot \theta

 For dip angle is zero \tan \delta =0

\cot \theta =0 , \theta =\frac{\pi}{}2

 For this value of θ angle of dip is vanished. It means that locus is again magnetic equator. 

 (c) 

tan \delta =\frac{B_v}{B_H}

Angle of dip 

\delta =\pm 45^{\circ}

\frac{ B_v}{B_H}=tan \pm 45^{\circ}

\frac{ B_v}{B_H}=1

2 \cot \theta =1

\tan \theta =\frac{1}{}2

 \theta =\tan ^{-1}({\frac{1}{}2})

 Thus, \theta =\tan ^{-1}({\frac{1}{}2})  is the locus.

Posted by

infoexpert24

View full answer