Get Answers to all your Questions

header-bg qa

If the medians of a \triangle ABC  intersect at G, show that  ar (AGB) = ar (AGC) = ar (BGC) = \frac{1}{3} ar (ABC)

Answers (1)

Solution.

Given: \triangle ABC with medians AM, BN & CL
ar (AGB) = ar (AGC) = ar (BGC) =\frac{1}{3} ar (ABC)


 

Proof: We know that a median divides the triangle into two triangles of same area.
Let the area of small triangles be denoted as 1, 2, 3, 4, 5, 6 as shown in the figure
AM is the median
ar (\triangle AMC) = ar (\triangle AMB)
ar(1) + ar(2) + ar(6) = ar(3) + ar(4) + ar(5)                        …(i)
CL is the median

ar(\triangle CAL)=ar(\triangle CBL)
ar(1)+ar(6)+ar(5)=ar(2)+ar(3)+ar(4)                          …(ii)
BN is the median
ar(\triangle BNA)=ar(\triangle BNC)
ar(4)+ar(5)+ar(6)=ar(1)+ar(2)+ar(3)                         
(i) – (ii)
ar(1)+ar(2)+ar(6)-ar(1)-ar(6)-ar(5)=ar(3)+ar(4)+ar(5)-ar(2)-ar(3)-ar(4)

So, ar(2)=ar(5)
(ii) – (iii)

ar(1)+ar(6)+ar(5)-ar(4)-ar(5)-ar(6)=ar(2)+ar(3)+ar(4)-ar(1)-ar(2)-ar(3)
ar(1)-ar(4)=ar(4)-ar(1)
So, ar(1)=ar(4)
Similarly we can prove that area of ar(1)=ar(2)=ar(3)=ar(4)=ar(5)=ar(6)

Hence the triangle is divided into 6 triangles of equal area.
\triangle AGB, \triangle AGCand \triangle BGC consists of 2 triangles each
So they have equal area which is equal to twice the area of the smaller triangles.
ar(\triangle AGB)=ar(\triangle AGC)=ar(\triangle BGC)=2   (area of 1 small triangle)

Hence, ar(\triangle AGB)=ar(\triangle AGC)=ar(\triangle BGC)=\frac{1}{3}ar(ABC)
Hence proved.

 

Posted by

infoexpert26

View full answer