Get Answers to all your Questions

header-bg qa

In \triangle ABC, D is the mid-point of AB and P is any point on BC. If CQ\parallel PD meets AB in Q, then prove that ar (BPQ)=\frac{1}{2}ar(ABC).

Answers (1)

Solution.
In \triangle ABC, D is the mid-point of AB and P is any point on BC.
CQ\parallel PD
Join D and C


Consider \triangle ABC,
Since D is the mid-point of AB
So CD is the median of
\triangle ABC
Using mid-point theorem,
ar(\triangle BCD)=\frac{1}{2}ar(\triangle ABC)          …(i)
Now, CQ \parallel PD
Since
\triangle PDQ and \triangle PDC are on the same base PD and between the same parallel lines PD & QC. So we have:
\therefore ar(\triangle PDQ)=ar(\triangle PDC)       …(ii)

From (i) & (ii)
ar (\triangle BCD) = \frac{1}{2}ar(\triangle ABC)
ar(\triangle BPD)+ar(\triangle PDC)=\frac{1}{2}ar(\triangle ABC)
Now, area of \triangle PDC = area of
\triangle PDQ
ar(\triangle BPD)+ar(\triangle PDQ)=\frac{1}{2}ar(\triangle ABC)
\Rightarrow ar(\triangle BPQ)=\frac{1}{2}ar(\triangle ABC)

Hence proved.

Posted by

infoexpert26

View full answer