Get Answers to all your Questions

header-bg qa

COLUMN A   

COLUMN B

a) The polar form of i+\sqrt3 is i) Perpendicular bisector of segment joining (-2,0) and (2,0)
b)The amplitude of -1+\sqrt{-3} is    ii) On or outside the circle having centre at (0,-4) and radius 3.
c) If \left | z+2 \right |=\left | z-2 \right | then locus of z is iii) 2\pi/3
d)If \left | z+2i \right |=\left | z-2i \right | then locus of z is

iv)Perpendicular bisector of segment joining (0,-2) and (0,2)

e) Region represented by \left | z+4i \right |\geq 3 is  v)2\left ( \cos\frac{\pi}{6}+i\sin\frac{\pi}{6} \right )
f) Region represented by \left | z+4 \right |\geq 3 is  vi) On or outside the circle having centre at (-4,0) and radius 3units.
g)Conjugate of \frac{1+2i}{1-i} lies in vii) First Quadrant
h) Reciprocal of 1-i lies in  viii) Third Quadrant

 

Answers (1)

a)Given z=i+\sqrt3 

Polar form of z =r[cos\theta+isin\theta]=i+\sqrt3.

r=\sqrt{3+1} =2

And \tan \alpha = \frac{1}{\sqrt3}

\alpha = \frac{\pi}{6}

Since x>0,y>0

Polar form of z =2[cos\frac{\pi}{6}+isin\frac{\pi}{6}]

b) Given that  z=-1+\sqrt3=-1+\sqrt3 i

Here argument =\tan^{-1}\left | \frac{\sqrt3}{-1} \right |= \tan^{-1}\sqrt{3}= \frac{\pi}{3}

So, \alpha = \frac{\pi}{3}

Since, x<0 and y>0  \theta=\pi-\alpha=\pi-\frac{\pi}{3}=\frac{2\pi}{3}

c) |z+2|=|z-2|

|x+iy+2|=|x+iy-2|

|(x-2)+iy|=|(x-2)+iy|

\sqrt{(x+2)^2+y^2} =\sqrt{(x-2)^2+y^2}

(x+2)^2+y^2=(x-2)^2+y^2

(x+2)^2=(x-2)^2

x^2+4+4x=x^2+4-4x

8x=0 , x=0

which represents equation of-y axis and is perpendicular to the line joining the points (-2,0) and (2,0)

d) |z+2i|=|z-2i|

(x+iy+2i)=|x+iy-2i|

|x+(y+2)i|=|x+(y-2)i|

\sqrt{x^2+(y+2)^2} =\sqrt{x^2+(y-2)^2 }

x^2+(y+2)^2=x^2+(y-2)^2

(y+2)^2=(y-2)^2

y^2+4+4y=y^2+4-4y

8y=0 ,y=0

which is the equation of x-axis and is perpendicular to the line segment joining (0,-2)and (0,2)

e) |z+4i|\geq3

|x+iy+4|\geq3

|x+(y+4)i|\geq3

\sqrt{x^2+(y+4)^2} \geq3

x^2+(y+4)^2\geq9

x^2+y^2+8y+16 \geq9

x^2+y^2+8y+7 \geq0   r=\sqrt{(4)^2-7}=3

which represents a circle on or outside having centre (0,-4)

f) |z+4|\leq3

Let z=x+iy  Then, |x+iy+4|\leq3

|(x+4)+iy|\leq3

\sqrt{(x+4)^2+y^2 } \leq3

x^2+8x+16+y^2\leq9

x^2+y^2+8x+7 \leq0 which is a circle having centre (-4,0) and r=\sqrt{(4)^2-7}=\sqrt9=3 and is on the circle.

g) Let z=\frac{1+2i}{1-i}

\frac{1+2i}{1-i}* \frac{1+i}{1+i}=\frac{1+i+2i+2i^2}{1-i^2}

=\frac{1+i+2i-2}{1+1}= \frac{-1+3i}{2}

=\frac{1+i+2i-2}{1+1}= \frac{-1+3i}{2}

=-\frac{1}{2}+\frac{3}{2}i which lies in third quadrant..

h) Given that z=1-i

Reciprocal of  z=\frac{1}{z}=\frac{1}{1-i}*\frac{1+i}{1+i}

=\frac{1+i}{1+i^2} which lies in first quadrant.

So,(a)-(v),(b)-(iii),(c)-(i),(d)-(iv),(e)-(ii),(f)-(vi),(g)-(viii),(h)-(vii)

 

Posted by

infoexpert21

View full answer