(ii) Polygon ABCDE is divided into parts as shown below (Fig 11.18). Find its area if $A D=8 \mathrm{~cm}, A H=6 \mathrm{~cm}, A G=4 \mathrm{~cm}, A F=3 \mathrm{~cm}$ and perpendiculars $B F=2 \mathrm{~cm}, C H=3 \mathrm{~cm}, E G=2.5 \mathrm{~cm}$. Area of Polygon ABCDE = area of $\triangle A F B+\ldots$
Area of $\Delta A F B=\frac{1}{2} \times A F \times B F=\frac{1}{2} \times 3 \times 2=\ldots$
Area of trapezium $F B C H=F H \times \frac{(B F+C H)}{2}$
$=3 \times \frac{(2+3)}{2}[F H=A H-A F]$
Area of $\Delta C H D=\frac{1}{2} \times H D \times C H=\ldots$
Area of $\triangle A D E=\frac{1}{2} \times A D \times G E=\ldots$
So, the area of polygon $ABCDE = $
Area of Polygon ABCDE = area of + area of trapezium BCHF + area of +area of