Get Answers to all your Questions

header-bg qa

The diagonals of a parallelogram ABCD intersect at a point O. Through O, a line is drawn to intersect AD at P and BC at Q. Show that PQ divides the parallelogram into two parts of equal area.

Answers (1)

Solution.
Given in parallelogram ABCD, diagonals intersect at O and draw a line PQ, which intersects AD at P and BC at Q.
To prove: PQ divides the parallelogram ABCD into two part of equals area.
ar (ABQP) = ar(CDPQ)


We know that, diagonals of a parallelogram bisect each other.
\ OA = OC and OB = OD …(i)
In \triangle AOB and \triangle COD
OA = OC and OB = OD [From eq. (i)]
and

ÐAOB = Ð
COD                                   [Vertically opposite angles]
\therefore \triangle AOB\cong \triangle COD 
                     [SAS congruence rule]
ar(\triangle AOB)=ar(\triangle COD)
          …(ii) [Congruent figures have equal area]

In \triangle AOP and \triangle COQ
ÐPAO = ÐOCQ                                   [alternate interior angles]
OA = OC
[From eq. (i)]
ÐAOP =
ÐCOQ                                  [Vertically opposite angles]
\triangle AOP\cong \triangle COQ                       
 [ASA congruence rule]
ar(\triangle AOP)=ar(\triangle COQ)       
 …(iii) [Congruent figures have equal area]

In \triangle POD and \triangle BOQ
ÐPDO = ÐOBQ                                [alternate interior angles]
OD = OB [From eq. (i)]
ÐDOP = ÐBOQ                                [Vertically opposite angles]
\triangle DOP\cong \triangle BOQ                       [ASA congruence rule]
ar(CDPQ)=ar(\triangle COQ)+ar(\triangle COD)+ar(\triangle POD) …(iv) [Congruent figures have equal area]
=ar(\triangle AOP)+ar(\triangle AOB)+ar(\triangle BOQ) [From ii, iii, iv]
= ar(ABQP)
\Rightarrow ar(ABQP) = ar(CDPQ)
Hence Proved.

Posted by

infoexpert26

View full answer