Get Answers to all your Questions

header-bg qa

There are two current-carrying planar coils made each from identical wires of length L. C_1 It is circular (radius R) and C_2 square (side a). They are so constructed that they have the same frequency of oscillation when they are placed in the same uniform B and carry the same current. Find 'a' in terms of R.

Answers (1)

For C_1,

Radius=R

length=L

Number of turns per unit length

 n_1=\frac{L}{2\pi R}

 For C_2

side=a 

perimeter=L

Number of turns per unit length

n_2=\frac{L}{4a}

Let Magnetic moment  C_1 be m_1=n_1iA_1 where i is the current in the coil  and

 The magnetic moment of C_{2} be m_2=n_2iA_2 where i is the current in the coil 

 m_1=L.i.\pi .\frac{R^2}{2\pi R } ; m_2=\frac{L}{4a}.i.a^2

m_1=\frac{LiR}{2 } ; m_2=\frac{Lia}{4} 

 Moment of inertia of C_1=I_1=\frac{MR^2}{}2

Moment of inertia ofC_2=I_2=\frac{Ma^2}{12}….ii  where M is the mass of the coil  

Frequency of C_1=f_1=2\pi \sqrt{\frac{I_1}{m_1B}}…iii  

 Frequency ofC_2=f_2=2\pi \sqrt{\frac{I_2}{m_2B}}….iv  

 According to the problem, f_{1}=f_{2}

 2\pi \sqrt{\frac{I_1}{m_1B}} =2\pi \sqrt{\frac{I_2}{m_2B}}

\frac{I_1}{m_1}=\frac{I_2}{m_2} or \frac{m_2}{m_1}=\frac{I_2}{I_1}

On substituting the values from eqn i, ii, and iv we get 

Lia.\frac{2}{4 \times LiR}=Ma^{2}.\frac{2}{12 MR^2}

\frac{ a}{2R}=\frac{a^2}{6R^2 }

 3R=a

  Thus, the value of 'a' is 3R. 

Posted by

infoexpert24

View full answer