## Filters

Sort by :
Clear All
Q

Q.7.    Find r if

(ii)  $^{5}P_{r}=^{6\! \! }P_{r-1}$

Given :  To find the value of r. We know that                                                                        where                              Thus,

Q.7.    Find r if

(i) $^{5}P_{r}=2\; ^{6}\! P_{r -1}$

Given :  To find the value of r. We know that                                                                        where                              Thus the  value of,

Q.9.    Find n if   $^{n-1}P_{3}:^{n}P_{4}=1:9.$

Given :  To find the value of n

Q.11.    In how many ways can the letters of the word PERMUTATIONS be arranged if the

(iii) there are always 4 letters between P and S?

The letters of the word PERMUTATIONS be arranged in such a way that there are always 4 letters between P and S. Therefore, in a way P and S are fixed. The remaining 10 letters in which 2 T's are present can be arranged in                                                                                                                                                                                ...

Q.11.    In how many ways can the letters of the word PERMUTATIONS be arranged if the

(ii) vowels are all together?

There are 5 vowels in word PERMUTATIONS  and each appears once. Since all 5 vowels are to occur together so can be treated as 1 object. The single object with the remaining 7 objects will be 8 objects. The 8 objects in which 2 T's repeat can be arranged as                                                                                            ways. These 5 vowels can also be arranged...

Q.11.    In how many ways can the letters of the word PERMUTATIONS be arranged if the

There are 2 T's in word PERMUTATIONS, all other letters appear at once only. If words start with P and ending with S i.e. P and S are fixed, then 10 letters are left. The required number of arrangements are

Q.10.    In how many of the distinct permutations of the letters in MISSISSIPPI do the
four I’s not come together?

In the given word MISSISSIPPI, I appears 4 times, S appears 4 times, M appears 1 time and P appear 2 times. Therefore, the number of distinct permutations of letters of the given word is                                                                                                                                                                                                                  ...

Q.9.     How many words, with or without meaning can be made from the letters of the
word MONDAY, assuming that no letter is repeated, if.

iii) all letters are used but first letter is a vowel?

There are 6 letters and 2 vowels in word MONDAY. Therefore, the right most position can be filled by any of these 2 vowels in 2 ways. Remaining 5 places of the word  can be filled using any of rest 5 letters of the word MONDAY. Hence, the required number of words formed using 5 letters at a time                                                                                                    ...

Q.9.    How many words, with or without meaning can be made from the letters of the
word MONDAY, assuming that no letter is repeated, if.

(ii) all letters are used at a time

There are 6 letters in word MONDAY. Therefore, words that can be formed using all 6 letters of the word MONDAY. Hence, the required number of words formed using 6 letters at a time                                                                                                                                                                                                                        ...

Q.9.    How many words, with or without meaning can be made from the letters of the
word MONDAY, assuming that no letter is repeated, if.

(i) 4 letters are used at a time

There are 6 letters in word MONDAY. Therefore, words that can be formed using  4 letters of the word MONDAY. Hence, the required number of words formed using 4 letters                                                                                                                                                                                                                                     ...

Q.8.    How many words, with or without meaning, can be formed using all the letters of

the word EQUATION, using each letter exactly once?

There are 8 different letters in word EQUATION. Therefore, words, with or without meaning, can be formed using all the letters of the word EQUATION, using each letter exactly once is permutations of 8 different letters taken 8 at a time, which is  Hence, the required number of words formed

Q.5.    From a committee of 8 persons, in how many ways can we choose a chairman

and a vice chairman assuming one person cannot hold more than one position?

From a committee of 8 persons, chairman and a vice chairman are to be chosen assuming one person can not hold more than one position. Therefore,number of ways of choosing a chairman and a vice chairman is permutations of 8 different objects taken 2 at a time. Therefore, required number of ways                                                                                                     ...

Q.4.    Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4,5

if no digit is repeated. How many of these will be even?

4-digit numbers that can be formed using the digits 1, 2, 3, 4,5. Therefore, there will be as many 4-digit numbers as there are permutations of 5 different digits taken 4 at a time. Therefore, the required number of 4-digit numbers                                                                                                                                                                   ...

Q.3.    How many 3-digit even numbers can be made using the digits

1, 2, 3, 4, 6, 7, if no digit is repeated?

3-digit even numbers can be made using the digits  1, 2, 3, 4, 6, 7, if no digit is repeated. The unit place can be filled in 3 ways by any digits from 2,4 or 6. The digit cannot be repeated in 3-digit numbers and the unit place is occupied with a digit(2,4 or 6). Hundreds, tens place can be filled by remaining any 5 digits. Therefore, there will be as many 2-digit numbers as there are...

Q.2.    How many 4-digit numbers are there with no digit repeated?

The thousands place of 4-digit numbers has to be formed by using the digits 1 to 9(0 cannot be included). Therefore, the number of ways in which thousands  place can be filled is 9. Hundreds,tens, unit place can be filled by any digits from 0 to 9. The digit cannot be repeated in 4-digit numbers and thousand places is occupied with a digit. Hundreds, tens, unit place can be filled by remaining...

Q.1.    How many 3-digit numbers can be formed by using the digits 1 to 9

if no digit is repeated?

3-digit numbers have to be formed by using the digits 1 to 9. Here, the order of digits matters. Therefore, there will be as many 3-digit numbers as there are permutations of 9 different digits taken 3 at a time. Therefore, the required number of 3-digit numbers                                                                                                                                      ...
Exams
Articles
Questions