## Filters

Clear All

G Gautam harsolia
Given the equation of the line is we can rewrite it as Let's take point on y-axis is  It is given that the distance of the point  from line  is 4 units Now, In this problem  Case (i) Therefore, the point is          -(i) Case (ii)  Therefore, the point is           -(ii) Therefore, points on the -axis  whose distance from the line   is units are   and

G Gautam harsolia
Let the intercepts on x and y-axis are a and b respectively It is given that Now, when  and when  We know that the intercept form of the line is Case (i)    when  a = 3 and  b = -2 Case (ii)   when  a = -2 and  b = 3 Therefore, equations of lines are

G Gautam harsolia
The normal form of the line is      Given the equation of lines is First, we need to convert it into normal form. So, divide both the sides by  On comparing both we will get Therefore, the answer is

G Gautam harsolia
Given equation of line is  It is given that it passes through origin (0,0) Therefore, Therefore, value of k is

G Gautam harsolia
Given equation of line is  and equation of y-axis is  it is given that these two lines are parallel to each other Therefore, their slopes are equal Slope of  is , and Slope of line   is ,  Now, Therefore, value of k is

G Gautam harsolia
Given equation of line is  and equation of x-axis is  it is given that these two lines are parallel to each other Therefore, their slopes are equal Slope of  is , and Slope of line   is ,  Now, Therefore, value of k is 3

G Gautam harsolia
we know that intercept form of line is we know that In this problem On squaring both the sides  we will get Hence proved

G Gautam harsolia
Let suppose foot of perpendicular is  We can say that line passing through point   is perpendicular to line passing through point  Now, Slope of line passing through point  is ,  And Slope of line  passing through point  is ,  lines are perpendicular Therefore, Now,  equation of line passing through point  (2 ,3)  and slope with 1                      -(i) Now,...

G Gautam harsolia
Given equations of lines are      and   We can rewrite the equation  as Now, we know that  In equation   Similarly, in the equation    Now,                                                                                                                                                                                                     Hence proved

G Gautam harsolia
We can say that line passing through point   is perpendicular to line  Now, The slope of the line  passing through the point  is ,  lines are perpendicular Therefore,                - (i) Now, the point  also lies on the line  Therefore, Therefore, the value of m and C is    respectively

G Gautam harsolia
Let suppose the foot of perpendicular is  We can say that line passing through the point   is perpendicular to the line  Now, The slope of the line  is ,  And The slope of the line  passing through the point is,  lines are perpendicular Therefore, Now, the point  also lies on the line  Therefore, On solving equation (i) and (ii) we will get Therefore,

G Gautam harsolia
Right bisector means perpendicular line which divides the line segment into two equal parts Now, lines are perpendicular which means their slopes are negative times inverse of each other Slope of line passing through points    and     is Therefore, Slope of bisector line is Now, let (h , k) be the point of intersection of two lines  It is given that point (h,k) divides the line segment...

G Gautam harsolia
Let the slope of two lines are    respectively It is given the lines intersects each other at an angle of    and slope of the line is 2 Now, Now, the equation of line passing through point (2 ,3) and with slope    is                          -(i) Similarly, Now , equation of line passing through point (2 ,3) and with slope    is                               -(ii) Therefore,...

G Gautam harsolia
It is given that line is parallel to the line   Therefore, their slopes are equal The slope of line   ,  Let the slope of other line be m Then, Now, the equation of the line passing through the point   and with slope   is Hence proved

G Gautam harsolia
Line passing through points ( h ,3) and (4 ,1) Therefore,Slope of the line is   This line intersects the line   at right angle Therefore, the Slope of both the lines are negative times inverse of each other  Slope of line  , Now, Therefore, the value of h is

G Gautam harsolia
Given equation of lines are     and    Slope of line  is,  And  Slope of line   is ,  Now, if   is the angle between the lines Then, Therefore, the angle between the lines is

G Gautam harsolia
It is given that line is  perpendicular to the line  we can rewrite it as Slope of line    ( m' ) =  Now,  The slope of the line is       Now, the equation of the line with  intercept   i.e. (3, 0) and  with slope -7 is

G Gautam harsolia
It is given that line is parallel to line   which implies that the slopes of both the lines are equal we can rewrite it as The slope of line   =   Now, the equation of the line passing through the point  and with slope  is Therefore, the equation of the line is