## Filters

Sort by :
Clear All
Q

Expand by expressing powers of 10 in the exponential form:

(i) 172      (ii) 5,643    (iii) 56,439    (iv) 1,76,428

(i) 172                          (ii) 5,643                                       (iii) 56,439                                 (iv) 1,76,428

Put into another form using $a^{m}\div b^{m}= (\frac{a}{b})^{m}$:

$(i)\: 4^{5}\div 3^{5}$        $(ii)\: 2^{5}\div b^{5}$       $(iii)\: (-2)^{3}\div b^{3}$         $(iv)\: p^{4}\div q^{4}$         $(v)\: 5^{6}\div (-2)^{6}$

can be simplified as                                       can be simplified as                                             can be simplified as                        can be simplified as                                        can be simplified as

Put into another form using $a^{m}\times b^{m}= (ab)^{m}$ :

$(i)\: 4^{3}\times 2^{3}$         $(ii)\: 2^{5}\times b^{5}$     $(iii)\: a^{2}\times t^{2}$     $(iv)\: 5^{6}\times (-2)^{6}$     $(v)\: (-2)^{4}\times (-3)^{4}$

can be simplified as        can be simplified as  can be simplified as        can be simplified as     can be simplified as

Simplify and write the answer in exponential form:

$(i)\: (6^{2})^{4}$           $(ii)\: (2^{2})^{100}$             $(iii)\: (7^{50})^{2}$           $(iv)\: (5^{3})^{7}$

can be simplified as  can be simplified as  can be simplified as  can be simplified as

Q.1.    Simplify and write in exponential form: (eg.,  $11^{6}\div 11^{2}= 11^{4}$)

$(i)\: 2^{9}\div 2^{3}$           $(ii)\: 10^{8}\div 10^{4}$        $(iii)\: 9^{11}\div 9^{7}$        $(iv)\: 20^{15}\div 20^{13}$          $(v)\: 7^{13}\div 7^{10}$

can be simplified as             can be simplified as         can be simplified as              can be simplified as    can be simplified as

Simplify and write in exponential form:

$(vi)\: (-4)^{100}\times (-4)^{20}$

can be simplified as

Simplify and write in exponential form:

$(v)\: 5^{3}\times 5^{7}\times 5^{12}$

can be simplified as

Simplify and write in exponential form:

$(iv)\: a^{3}\times a^{2}\times a^{7}$

can be simplified as

Simplify and write in exponential form:

$(iii)\: 4^{3}\times 4^{2}$

can be simplified as

Simplify and write in exponential form:

$(ii) p^{3}\times p^{2}$

can be simplified as

Simplify and write in exponential form:

$(i)2^{5}\times 2^{3}$

can be simplified as

Express:

(iii) 343 as a power of 7

343 as a power of 7 can be givena as

Express:

(ii) 128 as a power of 2

128 as a power of 2 can be given as

Express:

(i) 729 as a power of 3

729 as a power of 3 is given as
Exams
Articles
Questions