Clear All

Amount in the beginning = Rs. 10000
Interest at the end of 1st year at rate of
is of 10000 =
Therefore, amount at the end of 1st year will be
= 10000 + 800
= 10800
Now,
Interest at the end of 2nd year at rate of
is of 10800 =
Therefore,, amount at the end of 2ndyear
= 10800 + 864 = 11664
Since, each subsequent term is not obtained by adding a unique number to the previous term; hence,...

Given AP series is
Here,
Now,
Now, we know that
Now,
And
And
And
Therefore, missing terms are 53,23,8,-7
AP series is 53,38,23,8,-7,-22

Given AP series is
Here,
Now, we know that
Now,
And
And
And
Therefore, missing terms are -2,0,2,4
AP series is -4,-2,0,2,4,6

Given AP series is
Here,
Now, we know that
Now,
And
Therefore, missing terms are and 8
AP series is

Given AP series is
Here,
Now,
Now, we know that
Now,
And
Therefore, missing terms are 18 and 8
AP series is 18,13,8,3

Distance travelled by the competitor in picking and dropping 1st potato
Distance travelled by the competitor in picking and dropping 2nd potato
Distance travelled by the competitor in picking and dropping 3rd potato
and so on
we can clearly see that it is an AP with first term (a) = 10 and common difference(d) = 6
There are 10 potatoes in the line
Therefore, total distance travelled by...

As, the rows are going up, the no of logs are decreasing,
We can clearly see that 20, 19, 18, ..., is an AP .
and here
Let suppose 200 logs are arranged in 'n' rows,
Then,
Now,
case (i) n = 25
But number of rows can not be in negative numbers
Therefore, we will reject the value n = 25
case (ii) n = 16
Therefore, the number of rows in which 200 logs are arranged is equal...

From the above given figure
Circumference of 1st semicircle
Similarly,
Circumference of 2nd semicircle
Circumference of 3rd semicircle
It is clear that this is an AP with
Now, sum of length of 13 such semicircles is given by
Therefore, sum of length of 13 such semicircles is 143 cm

First there are 12 classes and each class has 3 sections
Since each section of class 1 will plant 1 tree, so 3 trees will be planted by 3 sections of class 1.Thus every class will plant 3 times the number of their class
Similarly,
No. of trees planted by 3 sections of class 1 = 3
No. of trees planted by 3 sections of class 2 = 6
No. of trees planted by 3 sections of class 3 = 9
No. of trees...

It is given that
Each price is decreased by 20 rupees,
Therefore, d = -20 and there are total 7 prizes so n = 7 and sum of prize money is Rs 700 so
Let a be the prize money given to the 1st student
Then,
Therefore, the prize given to the first student is Rs 160
Now,
Let is the prize money given to the next 6 students
then,
Therefore, prize money given to 1 to 7 student...

It is given that
Penalty for delay of completion beyond a certain date is Rs for the first day, Rs for the second day, Rs for the third day and penalty for each succeeding day being Rs more than for the preceding day
We can clearly see that
200,250,300,..... is an AP with
Now, the penalty for 30 days is given by the expression
Therefore, the penalty for 30 days is 27750

Odd number between 0 and 50 are
1,3,5,...49
This is an AP with
There are total 25 odd number between 0 and 50
Now, we know that
Therefore, sum of the odd numbers between and 625

First 15 multiples of 8 are
8,16,24,...
This is an AP with
Now, we know that
Therefore, sum of the first 15 multiple of 8 is 960

Positive integers divisible by 6 are
6,12,18,...
This is an AP with
Now, we know that
Therefore, sum of the first positive integers divisible by is 4920

It is given that
the sum of the first terms of an AP is
Now,
Now, first term is
Therefore, first term is 3
Similarly,
Therefore, sum of first two terms is 4
Now, we know that
Now,
Similarly,

It is given that
We will check values of for different values of n
and so on.
From the above, we can clearly see that this is an AP with the first term(a) equals to 4 and common difference (d) equals to -5
Now, we know that
Therefore, the sum of 15 terms is -465

It is given that
We will check values of for different values of n
and so on.
From the above, we can clearly see that this is an AP with the first term(a) equals to 7 and common difference (d) equals to 4
Now, we know that
Therefore, the sum of 15 terms is 525

It is given that
Now, we know that
Similarly,
On solving equation (i) and (ii) we will get
a = 1 and d = 2
Now, the sum of first n terms is
Therefore, the sum of n terms is

It is given that
And
Now,
Now, we know that
Therefore, there are 51 terms and their sum is 5610

- Previous
- Next

Exams

Articles

Questions