# Q&A - Ask Doubts and Get Answers

## Filters

Clear All

View All Answers (1)

M manish painkra
We have,  PQR is produced to a point S and  bisectors of PQR and PRS meet at point T, By exterior angle sum property, PRS = P + PQR Now,  ................(i) Since QT and QR are the bisectors of  PQR and PRS respectively. Now, in QRT, ..............(ii) From eq (i) and eq (ii),  we get Hence proved

View All Answers (1)

M manish painkra
We have,  PQ PS, PQ || SR, SQR = 28° and QRT = 65° Now, In  QRS, the side SR produced to T and PQ || RS therefore, QRT =  =   So,  Also, QRT = RSQ + SQR (By exterior angle property of a triangle) Therefore, RSQ = QRT - SQR                     Now, in  PQS, P + PQS + PSQ =

View All Answers (1)

M manish painkra
We have, lines PQ and RS intersect at point T, such that PRT = 40°, RPT = 95° and TSQ = 75° In PRT, by using angle sum property PRT + PTR + TPR =  So, PTR  =     Since lines, PQ and RS intersect at point T therefore, PTR = QTS (Vertically opposite angles)                 QTS =  Now, in QTS, By using angle sum property TSQ + STQ + SQT =  So, SQT =

View All Answers (1)

M manish painkra
We have,  AB || DE,  BAC = 35° and  CDE = 53° AE is a transversal so,  BAC =  AED =  Now, In  CDE, CDE + DEC + ECD =  (By angle sum property) Therefore, ECD =

View All Answers (1)

M manish painkra
We have  X = , XYZ =  YO and ZO bisects the XYZ and XZY Now, In XYZ, by using angle sum property XYZ + YZX + ZXY =  So, YZX =        YZX =  and, OYZ =  also, OZY =  Now, in OYZ  Y + O + Z =   [Y =  and Z = ] So, YOZ =

View All Answers (1)

M manish painkra
Given, PQR is a triangle, SPR =,  PQT =  Now, TQP + PQR =  (Linear pair) So, PQR =  Since the side of QP of the triangle, PQR is produced to S So, PQR + PRQ =  (Exterior angle property of triangle)

View All Answers (1)

M manish painkra
Draw  a ray BL PQ and CM  RS Since PQ || RS (Given) So, BL || CM and BC is a transversal  LBC =  MCB (Alternate interior angles).............(i) It is known that, angle of incidence  = angle of reflection So, ABL = LBC and MCB =  MCD ..................(ii) Adding eq (i) and eq (ii), we get ABC = DCB Both the interior angles are equal Hence AB || CD

View All Answers (1)

M manish painkra
Given, AB || CD, APQ =  and PRD =  PQ is a transversal. So,  APQ = PQR=  (alternate interior angles) Again, PR is a transversal. So,  y + =  (Alternate interior angles)

View All Answers (1)

M manish painkra
Draw a line EF parallel to the ST through R. Since PQ || ST and ST || EF   EF || PQ PQR = QRF =   (Alternate interior angles) QRF = QRS + SRF .............(i) Again, RST + SRF =  (Interior angles of two parallels ST and RF)   (RST = , given) Thus, QRS =

View All Answers (1)

M manish painkra
Given AB || CD, EFCD and GED =  In the above figure,  GE is transversal. So, that AGE = GED =   [Alternate interior angles] Also, GEF = GED - FED                       =            Since AB is a straight line  Therefore, AGE  + FGE =   So, FGE =

View All Answers (1)

M manish painkra
Given AB || CD and CD || EF and  therefore, AB || EF and  (alternate interior angles)..............(i) Again, CD || AB  .............(ii) Put the value of  in equation (ii), we get Then  By equation (i), we get the value of

View All Answers (1)

M manish painkra
Given that, In the figure, CD and PQ intersect at  F Therefore,   (vertically opposite angles) PQ is a straight line. So,  Hence AB || CD (since  and are  alternate interior angles)

View All Answers (1)

M manish painkra
Given that, XYZ =  and XY produced to point P and Ray YQ bisects ZYP   Now, XYP is a straight line So, XYZ + ZYQ + QYP =  Thus reflex of QYP =  Since XYQ = XYZ + ZYQ  [      =

View All Answers (1)

M manish painkra
Given that, POQ is a line, OR  PQ and  ROQ is a right angle. Now,  POS + ROS +  ROQ =   [since POQ is a straight line]  .............(i) and,  ROS +  ROQ =  QOS        ..............(ii) Add the eq (i ) and eq (ii),  we get hence proved

View All Answers (1)

M manish painkra
Given that,  ..............(i) It is known that, the sum of all the angles at a point =    ..............(ii) From eq (i) and eq (ii), we get Hence proved AOB is a line.

View All Answers (1)

M manish painkra
Given that, ABC is a triangle such that  PQR =  PRQ  and ST is a straight line. Now,  PQR +  PQS =      {Linear pair}............(i) Similarly,  PRQ +  PRT = ..................(ii) equating the eq (i) and eq (ii), we get    {but  PQR =  PRQ } Therefore,  PQS = PRT Hence proved.

View All Answers (1)

M manish painkra
Given that, Line XY and MN intersect at O and POY =  also ..............(i)  Since XY is a straight line Therefore, ...........(ii) Thus, from eq (i) and eq (ii), we get So,   Since MOY = c [vertically opposite angles]           a + POY = c

View All Answers (1)

M manish painkra
Given that, AB is a straight line. Lines AB and CD intersect at O.  and  BOD =  Since AB is a straight line  AOC + COE + EOB =   [since ] So, reflex COE =  It is given that AB and CD intersect at O Therefore, AOC  = BOD  [vertically opposite angle]  [ GIven  BOD = ] Also,  So,  BOE =

View All Answers (1)

D Devendra Khairwa
(i) In this case. the sum of the interior angle is  thus l is not parallel to m.\ (ii) In this case also l is not parallel to m as the corresponding angle cannot be   (Linear pair will not form). (iii) In this l and m are parallel. This is because the corresponding angle is  and it forms linear pair with   . (iv) The lines are not parallel as the linear pair not form. (Since corresponding angle...

View All Answers (1)

S Sanket Gandhi
(i) Since side AB is parallel to DG.       Thus :                           (Corresponding angles of parallel arms are equal.)   (ii)     Further side BC is parallel to EF. We have :                             (Corresponding angles of parallel arms are equal.)
Exams
Articles
Questions