## Filters

Sort by :
Clear All
Q

Q 4.     Find the value of:

(vii)     $\frac{3}{13}\div \left (\frac{-4}{65} \right )$

Given:  Simplifying it: we get

Q 4.     Find the value of:

(vi)     $\frac{-7}{12}\div \left (\frac{-2}{3} \right )$

Given:  Simplifying it: we get

Q 4.     Find the value of:

(v)     $\frac{-2}{13}\div \frac{1}{7}$

Given:  Simplifying it: we get

Q 4.     Find the value of:

(iv)     $\frac{-1}{8}\div \frac{3}{4}$

Given:  Simplifying it:

Q 4.     Find the value of:

(iii)     $\frac{-4}{5}\div (-3)$

Given:  So, dividing  with -3, we get

Q 4.     Find the value of:

(ii)      $\frac{-3}{5}\div 2$

Given  Dividing   with 2 we get,

Q 4.     Find the value of:

(i)     $(-4)\div \frac{2}{3}$

Given:  Dividing  by  , we get

Q 3.     Find the product:

(vi)     $\frac{3}{-5}\times \frac{-5}{3}$

Given product:

Q 3.     Find the product:

(v)     $\frac{3}{11}\times \frac{2}{5}$

Given product:

Q 3.     Find the product:

(iv)     $\frac{3}{7}\times \left (\frac{-2}{5} \right )$

Given product

Q 3.     Find the product:

(iii)    $\frac{-6}{5}\times \frac{9}{11}$

Given product:  The value of given product is

Q 3.     Find the product:

(ii)     $\frac{3}{10}\times (-9)$

Given  So the value

Q 3.     Find the product:

(i)     $\frac{9}{2}\times\left ( \frac{-7}{4} \right )$

Given product:

Q 2.     Find

(v)     $-2\frac{1}{9}-6$

Given:  LCM of 9 and 1 will be, 9 Hence,

Q 2.     Find

(iv)    $\frac{-3}{8}-\frac{7}{11}$

Given : LCM of 8 and 11 is 88, then

Q 2.     Find

(ii)     $\frac{-6}{13}-\left (\frac{-7}{15} \right )$

Q 2.     Find

(ii)     $\frac{5}{63}-\left (\frac{-6}{21} \right )$

Given   : LCM of 63 and 21 is 63,  Then we have;

Q 2.     Find

(i)     $\frac{7}{24} -\frac{17}{36}$

Given sum:  We have LCM of 24 and 36 will be, 72 Hence,

Q 1.     Find the sum:

(vii)     $-2\frac{1}{3}+4\frac{3}{5}$

Given the sum:  Taking the LCM of 3 and 5 we have: 15

Q 1.     Find the sum:

(vi)     $\frac{-2}{3}+0$

Given sum:   Adding any number to zero we get, the number itself Hence,
Exams
Articles
Questions