Get Answers to all your Questions

header-bg qa

An urn contains 5 red, 2 white and 3 black balls. Three balls are drawn, one-by-one, at random without replacement. Find the probability distribution of the number of white balls. Also, find the mean and the variance of the number of white balls drawn.

 

Answers (1)

Assume the number of white balls are X.

X = 0,1,2

X p(X) X.p(X) X2.p(X)
0 \frac{8}{10} \times \frac{7}{9} \times \frac{6}{8}=\frac{7}{15} 0 0
1 3 \times \frac{8}{10} \times \frac{7}{9} \times \frac{2}{8}=\frac{7}{15} \frac{7}{15} \frac{7}{15}
2 3 \times \frac{8}{10} \times \frac{2}{9} \times \frac{1}{8}=\frac{1}{15} \frac{2}{15} \frac{4}{15}

\\ \text { Mean }=\sum X p(X) \\ = \frac{7}{15}+\frac{2}{15} \\\\ =\frac{3}{5} \\

\\ \text { Variance }=\sum X^{2} p(x)-\left[\sum X p(X)\right]^2 \\\\ =\frac{7}{15} + \frac{4}{15} - \left[\frac{3}{5}\right]^{2}\\\\ =\frac{11}{15} - \frac{9}{25} \\\\ = \frac{55-27}{75} = \frac{28}{75}

Posted by

Safeer PP

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads