Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter Increasing and Decreasing Functions exercise 16.2 question 24 maths

Answers (1)

Answer:

 f(x) is decreasing function on R

Given:

f(x)=tan^{-1}x-x

To prove:

We have to show that f(x) is decreasing function on R.

Hint:

A function f(x) to be decreasing if f ’(x) > 0

Solution:

We have

f(x)=tan^{-1}x-x

On differentiating both sides w.r.t x we get

\begin{aligned} &\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(\tan ^{-1} x-x\right) \\ &=\frac{1}{1+x^{2}}-1,\left[\therefore \frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}\right] \\ &\Rightarrow f^{\prime}(x)=\frac{-x^{2}}{1+x^{2}} \end{aligned}

\begin{aligned} &\text { Now, } x \in R \\ &\Rightarrow x^{2}>0 \text { and } 1+x^{2}>0 \\ &\Rightarrow \frac{x^{2}}{1+x^{2}}>0 \\ &\Rightarrow \frac{-x^{2}}{1+x^{2}}<0 \end{aligned}

By applying negative sign change comparison sign

\begin{aligned} &\Rightarrow f'(x)< 0 \end{aligned}

Hence f(x) is decreasing function for x \inR

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads