Get Answers to all your Questions

header-bg qa

explain solution rd sharma class 12 chapter Solution of simultaneous linear equation exercise 7.2 question 4 maths

Answers (1)

Answer:

            x= 2k,y= 4k,z= k

Hint:

If \left | A \right |= 0, then the system of equation has non-trivial solution.

Given:

            x+y-6z=0

            x-y+2z=0

            -3x+y+2z=0

Explanation:

The given homogeneous system can be written in matrix form

i.e.        \begin{bmatrix} 1 & 1 & -6\\ 1& -1 & 2\\ -3& 1 & 2 \end{bmatrix}\begin{bmatrix} x\\ y\\ z \end{bmatrix}=\begin{bmatrix} 0\\ 0\\0 \end{bmatrix}

                    A=\begin{bmatrix} 1 & 1 & -6\\ 1& -1 & 2\\ -3& 1 & 2 \end{bmatrix}

let

                  \left | A \right |=\begin{vmatrix} 1 & 1 & -6\\ 1& -1 & 2\\ -3& 1 & 2 \end{vmatrix}

                         = 1(-2-2)-1(2+6)-6(1-3)

                         = -4-8+12

                         = 0

So, the given system of equation has a non-trivial solution.

To find these solutions, we write the first two equations as

                        x+y=6z

                        x-y=-2z

Let z=k, then we have

                        \begin{bmatrix} 1 & 1\\ 1 & -1\end{bmatrix}\begin{bmatrix} x\\ y\end{bmatrix}=\begin{bmatrix} 6k\\ -2k\end{bmatrix}

                A=\begin{bmatrix} 1 & 1\\ 1 & -1\end{bmatrix},X=\begin{bmatrix} x\\ y\end{bmatrix},B=\begin{bmatrix} 6k\\ -2k\end{bmatrix}

Where,

               \left | A \right |=\begin{vmatrix} 1 & 1\\ 1 & -1\end{vmatrix}=-2\neq 0

So A^{-1} exists

                adjA=\begin{bmatrix} -1 & -1\\ -1 & 1\end{bmatrix}

                A^{-1}=\frac{1}{\left | A \right |}adjA

                A^{-1}=\frac{1}{-2}\begin{bmatrix} -1 & -1\\ -1& 1\end{bmatrix}

Now,   X=A^{-1}B

                     \begin{bmatrix} x\\ y\end{bmatrix}=\frac{1}{-2}\begin{bmatrix} -1 & -1\\ -1& 1\end{bmatrix}\begin{bmatrix} 6k\\ -2k\end{bmatrix}

                                \begin{bmatrix} x\\ y\end{bmatrix}=\begin{bmatrix} 2k\\ 4k\end{bmatrix}

                    x=2k, y=4k

Put in third equation, so these values x=2k, y=4k,z=k satisfies it.

Hence ,x=2k, y=4k,z=k, where k\in R

 

 

 

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads