Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter Increasing and Decreasing Functions exercise 16.2 question 30 subquestion (ii)

Answers (1)

Answer:

f(x) is an increasing on R.

Given:

f(x)=4x^{3}-18x^{2}+27x-27

To prove:

We have to prove that f(x) is an increasing on R.

Hint:

If f’(x) > 0 then f(x) is increasing function.

Solution:

Here we have

f(x)=4x^{3}-18x^{2}+27x-27

On differentiating both sides w.r.t x we get

\begin{aligned} &\Rightarrow f^{\prime}(x)=\frac{d}{d x}\left(4 x^{3}-18 x^{2}+27 x-27\right) \\ &\Rightarrow f^{\prime}(x)=12 x^{2}-36 x+27 \\ &\Rightarrow f^{\prime}(x)=3\left(4 x^{2}-12 x+9\right) \\ &\Rightarrow f^{\prime}(x)=3(2 x-3)^{2} \end{aligned}

\begin{aligned} &\text { Now, } x \in R \\ &\Rightarrow(2 x-3)^{2}>0 \\ &\Rightarrow 3(2 x-3)^{2}>0 \\ &\Rightarrow f^{\prime}(x)>0 \end{aligned}

Thus f(x) is increasing function on R.

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads