Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 11 Higher Order Derivatives Exercise Multiple Choice Questions Maths Textbook Solution Question 14

Answers (1)

Answer:

                (a)

Hint:

We must know about the derivative.

Given:

                x=f(t), y=g(t)

Explanation:

                x=f(t), y=g(t)

                \\ \frac{d x}{d t}=f^{\prime}(t), \frac{d y}{d t}=g^{\prime}(t) \

                \ \frac{d y}{dt}\cdot{\frac{d t}{d x}}=\frac{g^{\prime}(t)}{f^{\prime}(t)} \\

                \begin{aligned} &\frac{d y}{d x}=\frac{g^{\prime}(t)}{f^{\prime}(t)} \end{aligned}

Differentiate on both sides,

                \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right) \\

                =\frac{d}{d t}\left(\frac{g^{\prime}(t)}{f^{\prime}(t)}\right) \times \frac{d t}{d x} \\

                =\frac{f^{\prime}(t) g^{\prime \prime}(t)-g^{\prime}(t) f^{\prime \prime}(t)}{\left(f^{\prime}(t)\right)^{2}} \times \frac{1}{f^{\prime}(t)}

                =\frac{f^{\prime}(t) g^{\prime \prime}(t)-g^{\prime}(t) f^{\prime \prime}(t)}{\left(f^{\prime}(t)\right)^{3}}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads