Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma maths class 12 chapter Higher Order Derivatives exercise 11.1 question 46

Answers (1)




You must know the derivative of cos, sin, tan and logarithm function


\begin{aligned} &x=a\left(\cos t+\log \tan \frac{t}{2}\right) \\ &y=a \sin t \quad \text { find } \frac{d^{2} y}{d x^{2}} \text { at } t=\frac{\pi}{3} \end{aligned}


        \begin{aligned} &x=a\left(\cos t+\log \tan \frac{t}{2}\right) \\ &\frac{d x}{d t}=a\left[-\sin t+\frac{1}{\tan \frac{t}{2}} \sec ^{2} \frac{t}{2} \cdot \frac{1}{2}\right] \\ &\frac{d x}{d t}=a\left[-\sin t+\frac{\cos \frac{t}{2}}{2 \sin \frac{t}{2}} \frac{1}{\cos ^{2} \frac{t}{2}}\right] \end{aligned}

        \begin{aligned} &\frac{d x}{d t}=a\left[-\sin t+\frac{1}{2 \sin \frac{t}{2} \cos \frac{t}{2}}\right] \\ &\frac{d x}{d t}=a\left[-\sin t+\frac{1}{\sin t}\right] \\ &\frac{d x}{d t}=\frac{a \cos ^{2} t}{\sin t} \\ &y=a \sin t \end{aligned}

        \begin{aligned} &\frac{d y}{d t}=a \cos t \\ &\therefore \frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}=\frac{a \cos t}{a \cos ^{2} t} \times \sin t=\tan t \\ &\text { Again } \frac{d^{2} y}{d x^{2}}=\sec ^{2} t \times \frac{\sin t}{a \cos ^{2} t} \end{aligned}

        \begin{aligned} &\left.\frac{d^{2} y}{d x^{2}}\right]_{t=\frac{\pi}{3}}=\frac{\sec ^{2} \frac{\pi}{3} \cdot \sin \frac{\pi}{3}}{a \cos ^{2} \frac{\pi}{4}}=\frac{(2)^{2} \cdot\left(\frac{\sqrt{3}}{2}\right)}{a\left(\frac{1}{2}\right)^{2}} \\ &\left.\frac{d^{2} y}{d x^{2}}\right]_{t=\frac{\pi}{3}}=\frac{8 \sqrt{3}}{a} \end{aligned}

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support