Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter 11 Higher Order Derivatives Exercise Multiple Choice Questions Maths Textbook Solution Question 27

Answers (1)

Answer:

                (a)

Hint:

We must know about the derivative rules of exponential functions.

Given:

                y=A e^{5 x}+B e^{-5 x} \\

Explanation:

                y=A e^{5 x}+B e^{-5 x} \\

                \frac{d y}{d x}=A e^{5 x} \cdot 5+B e^{-5 x} \cdot(-5) \\

                \begin{aligned} & &\frac{d y}{d x}=5 A e^{5 x}-5 B e^{-5 x} \end{aligned}

Again differentiate with respect to  x

                \frac{d^{2} y}{d x^{2}}=5 A e^{5 x}(5)-5 B e^{-5 x}(-5) \\

                \begin{aligned} & &\frac{d^{2} y}{d x^{2}}=25 A e^{5 x}+25 B e^{-5 x} \end{aligned}

                \frac{d^{2} y}{d x^{2}}=25\left[A e^{5 x}+B e^{-5 x}\right] \

                \begin{aligned} &\ &\frac{d^{2} y}{d x^{2}}=25 y \end{aligned}

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads