Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter 13 Differentials Errors and Approximations exercise multiple choice question 1 maths textbook solution

Answers (1)

Answer:  A) 1%

Hint:  Here, we all know the formula of period of a pendulum is

            T=2 \pi \sqrt{\frac{L}{g}}

Given:

Given,   \left(\frac{\Delta L}{L}\right) \times 100=2

[If we let the length of pendulum is L]

Solution:

Given \left(\frac{\Delta L}{L}\right) \times 100=2......equation 1               (if we let the length of pendulum is L)

we all know the formula of period of a pendulum is \mathrm{T}=2 \pi \times \mathrm{V}(\mathrm{l} / \mathrm{g})

By the formula of approximation in derivation, we get

Time period,

                T=2 \pi \sqrt{\frac{L}{g}}

Taking Log on both sides, we get

\log T=\log 2 \pi+\frac{1}{2} \log \mathrm{L}-\frac{1}{2} \log g

Differentiating both sides w.r.t x, we get

So,

        \begin{gathered} \frac{1}{T} \frac{d T}{d L}=\frac{1}{2 L} \\\\ \frac{d T}{d L}=\frac{T}{2 L} \end{gathered}

        \left(\frac{\Delta T}{T}\right) \times 100=\frac{1}{2} \times\left(\frac{\Delta L}{L}\right) \times 100

        \left(\frac{\Delta T}{T}\right) \times 100=\frac{1}{2} \times 2               (from  equation 1 \left(\frac{\Delta L}{L}\right) \times 100=2 )

        \begin{aligned} &\left(\frac{\Delta T}{T}\right)=\frac{1}{100} \\\\ &\left(\frac{\Delta T}{T}\right)=1 \% \end{aligned}

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads