Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter Higher Order Derivatives exercise 11.1 question 25 maths textbook solution

Answers (1)

Answer:

        Proved

HInt:

You must know the derivative of logarithm and tangent inverse x

Given:

\log y=\tan ^{-1} x, \text { show }\left(1+x^{2}\right) y_{2}+(2 x-1) y_{1}=0

Solution:

        \begin{aligned} &\log y=\tan ^{-1} x\\ &\text { Differentiate the equation w.r.t } x\\ &\frac{1}{y} \frac{d y}{d x}=\frac{1}{1+x^{2}}\\ &1+x^{2} \frac{d y}{d x}=y \end{aligned}

        Di\! f\! ferentiate\; again\\ \left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}(2 x)=\frac{d y}{d x}\\ \left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+(2 x-1) \frac{d y}{d x}=0\\ or\\ \left(1+x^{2}\right) y_{2}+(2 x-1) y_{1}=0

Posted by

Gurleen Kaur

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads