Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Relation Exercise 1.2 Question 14 Maths Textbook Solution.

Answers (1)

Answer: R is an equivalence relation onZ\times Z_{0}
Hint: To prove equivalence relation it is necessary that the given relation should be reflexive, symmetric and transitive.
Given: Z\: be\: set\: o\! f \: integers\: and\: Z_{0}\: be\: the\: set\: o\! f \: non-zero \: integers.
R=\left \{ ((a, b),( c, d)):ad=bc \right \}\: be\: a\: relation\: on\: Z\times Z_{0}
Explanation:
Reflexivity:
(a, b) \: \epsilon \: Z\times Z_{0}
ab=ba
(a, b), (a, b)) \: \epsilon \: R
R is reflexive
Symmetric:
Let\left ( (a, b), (c, d)\right ) \: \epsilon \: R
ad=bc
cb=da
\left ((c,d), (a,b) \right )\epsilon \: R
R is symmetric
Transitive:
Let ((a, b), (c, d)) \epsilon \: R\: and\: (c, d), (e, f)) \epsilon \: R
ad=bc\: and\: cf=de
\frac{a}{b}=\frac{c}{d} \: \:\: \: \: \: ...(i)\: and \: \frac{c}{d} =\frac{e}{f}\: \: \: \: \: ....(ii)
Using (ii) in (i), we get
\frac{a}{b}=\frac{e}{f}
a\! f=bc
((a, b),(e, f)) \epsilon \: R
R is transitive
Therefore, R is reflexive, symmetric and transitive.
Hence, R is an equivalence relation onZ\times Z_{0}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads