Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Relation Exercise 1.2 Question 6 Maths Textbook Solution.

Answers (1)

Answer: R is an equivalence relation on Z
Hint:  To prove equivalence relation it is necessary that the given relation should be reflexive, symmetry and transitive.
Given: \! R=\left \{\left (m, n \right ) \! :\! m-n\: is\: divisible\: by\: 13 \right \} be\: a \: relation\: on\: Z
Explanation:
Let us check these properties on R.
Reflexivity:
Let m be an arbitrary element of Z.
Then, m-m=0=0\times 13
\Rightarrow m-m \: is \: divisible\: by\: 13.
\Rightarrow (m, m) \: \epsilon \: R
Hence, R is reflexive on Z.
Symmetry:
Let (m, n) \: \epsilon \: R
Then, m-n\: is\: divisible\: by \: 13
               m-n=13p
Here, p \: \epsilon \: Z
              n-m=13(-p)
Here, -p \: \epsilon \: Z
             n-m\: is\: divisible \: by\: 13
             (n, m) \: \epsilon \: R \: f\! or\: all\: m, n \: \epsilon \: Z
So, R is symmetric on Z.
Transitivity:
Let (m, n) and (n, o) \: \epsilon \: R
m-n\: and\: n-o \: are\: divisible\: by \: 13
m-n=13p\: f\! or\: some\: p \: \epsilon \: Z \: \: \: \: \: \: \: \: \: ...(i)
n-o=13q \: f\! or\: some\: q \: \epsilon \: Z \: \: \: \: \: \: \: ...(ii)
Adding (i) and (ii)
m-n+n-o=13p+13q
m-o=13(p+q)
Here, p+q \: \epsilon \: Z
m-o\: is \: divisible\: by \: 13
(m, o) \: \epsilon \: R\: f\! or\: all\: m, o \: \epsilon \: Z
So, R is transitive on Z
Therefore, R is reflexive, symmetric and transitive.
Hence, R is an equivalence relation on Z.

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads