Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Relation Exercise 1.2 Question 7 Maths Textbook Solution.

Answers (1)

Answer: R is an equivalence relation.
Hint: To prove equivalence relation it is necessary that the given relation should be reflexive, symmetric and transitive.
Explanation:
Given: R be a relation on A
Set\: A\: o\! f\: order\: pair\: o\! f \: integers\: de\! f\! ined\: by\: (x, y) R(u, v)\: if\: xv=yu
Reflexivity:
Let (a, b) be\: an\: arbitrary\: element\: o\! f\: the\: set\: A.
Then, (a, b) \: \epsilon \: A
                ab=ba
               \left (a, b \right )\: R\: (a, b)
Thus, R is reflexive on A.
Symmetry:
\text{Let (x, y) and (u, v) }\: \epsilon \: A \: \text{ such that (x, y) R(u, v), Then}
       xv=yu
\Rightarrow vx=uy
\Rightarrow uy=vx
\left ( u, v \right )R\: (x, y)
So, R is symmetric on A.
Transitivity:
Let\left ( x, y\right ), (u, v) and (p, q) \: \epsilon \: R\: such\: that\left ( x, y \right )R (u, v) and\left ( u, v \right ) R (p, q)
xv=yu \: \: \: \: \: \: \: \: ...(i)
uq=vp \: \: \: \: \: \: ...(ii)
Multiply eq. (i) and (ii)
xv\! \times \! uq=yu\! \times\! vp
xvuq = yuvp
cancelling out vu it is common on both sides
xq=yp
\left ( x, y\right ) R (p,q)
So, R is transitive on A.
Therefore, R is reflexive, symmetric and transitive.
Hence, R is an equivalence relation on A.

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads