Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Relation Exercise 1.2 Question 8 Maths Textbook Solution.

Answers (1)

Answer:R is an equivalence relation and the set of all elements related to 1 is 1.
Hint: To prove equivalence relation it is necessary that the given relation should be reflexive, symmetric and transitive.
Given: \! Set A=\left \{ x \: \epsilon \: Z ;0 \leq x \leq 12 \right \}
Also\: given\: that\: relation\: R=\left \{ \left ( a, b \right )\! :\! a=b \right \} is \: defined\: on \: set\: A
Explanation:
Reflexivity:
Let a be an arbitrary element of A.
Then,
a=a \; \; \; \; \; \; [Since, every\: element \: is\: equal\: to\: itsel\! f]
(a, a) \: \epsilon \: R\: f\! or\: all\: a \: \epsilon \: A
So, R is reflexive on A
Symmetry:
Let (a, b)\: \epsilon \: R
       a=b
       b=a
      (b, a) \: \epsilon \: R\: f\! or\: all\: a,b \: \epsilon \: A
So, R is symmetric on A.
Transitivity:
Let\: a, b\: and\: (b, c) \: \epsilon \: R
a=b ...(i)\: and \: b=c ...(ii)
multiplying eqn (i) and (ii), we get
      ab=bc
      a=c
there\! f\! ore, (a, c) \: \epsilon \: R
So, R is transitive on A.
Therefore, R is reflexive, symmetric and transitive.
Hence, R is an equivalence relation on A.
R=\left \{ \left ( a, b \right ):a=b\: \right \} and\: 1 \: is\: on\: element\: o\! f \: A.
R=\! \left \{\left ( 1, 1 \right ):1=1 \right \}
Thus, the set of all elements related to 1 is 1.

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads