Get Answers to all your Questions

header-bg qa

Please Solve RD Sharma Class 12 Chapter Relation Exercise 1.2 Question 11 Maths Textbook Solution.

Answers (1)

Answer: R is an equivalence relation on A
Hint: To prove equivalence relation it is necessary that the given relation should be reflexive, symmetric and transitive.
Given: O\; be\; the\; origin\; and\; R=\left \{ \left (P, Q \right ):OP=OQ \right \} be\; a\; relation \; on\; A \; where\; O\; is \; the\; origin.
Explanation:
Let A be a set of points on a plane.
Reflexivity:
Let\: P \: \epsilon \: A
Since, OP=OP=(P, P) \: \epsilon \: R
R is reflexive.
Symmetric:
Let (P, Q) \: \epsilon \: R \: f\! or\: P, Q \: \epsilon \: A
Then \: OP=OQ
  OQ=OP
(Q, P) \: \epsilon \: R
R is symmetric
Transitive:
Let (P, Q) \: \epsilon \: R\: and\: (Q, S) \: \epsilon \: R
OP=OQ \: \: ...(i)\: and \: \: OQ=OS \: \:....(ii)
Putting  (ii) in (i), we get
OP=OS
(P, S)\: \epsilon \: R
R is transitive
Therefore, R is reflexive, symmetric and transitive.
Thus, R is an equivalence relation on A.

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads