Get Answers to all your Questions

header-bg qa

Please solve rd sharma class 12 chapter Solution of simultaneous linear equation exercise 7.2 question 5 maths textbook solution

Answers (1)

Answer:

            x= 2k,y= -3k,z= k

Hint:

If \left | A \right |= 0, then the system of equation has non-trivial solution.

Given:

            x+y+z=0

            x-y-5z=0

            x+2y+4z=0

Explanation:

The given homogeneous system can be written in matrix form

i.e.        \begin{bmatrix} 1 & 1 & 1\\ 1& -1 & -5\\ 1& 2 & 4\end{bmatrix}\begin{bmatrix} x\\ y\\ z \end{bmatrix}=\begin{bmatrix} 0\\ 0\\0 \end{bmatrix}

                    A=\begin{bmatrix} 1 & 1 & 1\\ 1& -1 & -5\\ 1& 2& 4 \end{bmatrix}

let

                  \left | A \right |=\begin{vmatrix} 1 & 1 & 1\\ 1& -1 & -5\\ 1& 2 & 4 \end{vmatrix}

                         = 1(-4+10)-1(4+5)+1(2+1)

                         = 6-9+3

                         = 0

So, the given system of equation has a non-trivial solution.

To find these solutions, we write the first two equations as

                        x+y=6z

                        x-y=-2z

Let z=k, then we have

                        \begin{bmatrix} 1 & 1\\ 1 & -1\end{bmatrix}\begin{bmatrix} x\\ y\end{bmatrix}=\begin{bmatrix} -k\\ 5k\end{bmatrix}

                A=\begin{bmatrix} 1 & 1\\ 1 & -1\end{bmatrix},X=\begin{bmatrix} x\\ y\end{bmatrix},B=\begin{bmatrix} -k\\ -5k\end{bmatrix}

Where,

               \left | A \right |=\begin{vmatrix} 1 & 1\\ 1 & -1\end{vmatrix}=-2\neq 0

So A^{-1} exists

                adjA=\begin{bmatrix} -1 & -1\\ -1 & 1\end{bmatrix}

                A^{-1}=\frac{1}{\left | A \right |}adjA

                A^{-1}=\frac{1}{-2}\begin{bmatrix} -1 & -1\\ -1& 1\end{bmatrix}

Now,   X=A^{-1}B

                     \begin{bmatrix} x\\ y\end{bmatrix}=\frac{1}{-2}\begin{bmatrix} -1 & -1\\ -1& 1\end{bmatrix}\begin{bmatrix} -k\\ 5k\end{bmatrix}

                                \begin{bmatrix} x\\ y\end{bmatrix}=\begin{bmatrix} 2k\\ -3k\end{bmatrix}

                    x=2k, y=-3k

Put in third equation, so these values x=2k, y=-3k,z=k satisfies it.

Hence ,x=2k, y=-3k,z=k, where k\in R

 

 

 

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads