Get Answers to all your Questions

header-bg qa

Provide Solution for RD Sharma Class 12 Chapter 11 Higher Order Derivatives Exercise Multiple Choice Question Question 11

Answers (1)

Answer:

                (a)

Hint:

We know about the derivative of polynomials.

Given:

               f\left ( x \right )   be a polynomial, f\left ( e \right )^{x} .

Explanation:

                  y=f\left ( e \right )^{x}

                \begin{gathered} \frac{d}{d x}\left(f\left(e^{x}\right)\right)=f^{\prime}\left(e^{x}\right) \times \frac{d}{d x}\left(e^{x}\right) \\ \end{gathered}

                 =f^{\prime}\left(e^{x}\right) \cdot e^{x}

Similarly,

                \begin{aligned} & \frac{d^{2}}{d x^{2}}\left(f\left(e^{x}\right)\right)=f "\left(e^{x}\right) \frac{d}{d x}\left(e^{x}\right) e^{x}+\frac{d}{d x}\left(e^{x}\right) f^{\prime}\left(e^{x}\right) \\ \end{aligned}

                \Rightarrow \quad f^{\prime \prime}\left(e^{x}\right) e^{2 x}+f^{\prime}\left(e^{x}\right)\left(e^{x}\right)

 

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads