Get Answers to all your Questions

header-bg qa

Provide Solution for RD Sharma Class 12 Chapter 11 Higher Order Derivatives Exercise Multiple Choice Question Question 28

Answers (1)

Answer:

                (d)

Hint:

We must know about the derivative rules of logarithm.

Given:

                y=\log _{e}\left(\frac{x^{2}}{e^{2}}\right)

Explanation:

                y=\log _{e}\left(\frac{x^{2}}{e^{2}}\right)

Differentiate with respect to  x

                \frac{d y}{d x}=\frac{1}{\frac{x^{2}}{e^{2}}} \cdot \frac{1}{e^{2}} 2 x

                \begin{aligned} &\\ &\frac{d y}{d x}=\frac{2}{x} \end{aligned}

Again differentiate,

                \frac{d^{2} y}{d x^{2}}=2\left(\frac{-1}{x^{2}}\right)

                \begin{aligned} & \\ &\frac{d^{2} y}{d x^{2}}=\frac{-2}{x^{2}} \end{aligned}

Posted by

infoexpert27

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads