Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma Maths Class 12 Chapter 25 Scalar Triple Product Exercise Very Short Answer Question, question 6.

Answers (1)

Answer:

\overrightarrow{a}\times \overrightarrow{b}

Hint:

Use scalar triple product formula.

Given:

\left[\begin{array}{lll} \overrightarrow{\boldsymbol{a}} & \vec{b} & \vec{i} \end{array}\right] \hat{\imath}+\left[\begin{array}{lll} \vec{a} & \vec{b} & \vec{j} \end{array}\right] \hat{\jmath}+\left[\begin{array}{lll} \vec{a} & \vec{b} & \vec{k} \end{array}\right] \hat{k} where \overrightarrow{a},\overrightarrow{b} are non-collinear.

Solution:

\left[\begin{array}{lll} \overrightarrow{\boldsymbol{a}} & \vec{b} & \vec{i} \end{array}\right] \hat{\imath}+\left[\begin{array}{lll} \vec{a} & \vec{b} & \vec{j} \end{array}\right] \hat{\jmath}+\left[\begin{array}{lll} \vec{a} & \vec{b} & \vec{k} \end{array}\right] \hat{k}

=\{(\vec{a} \times \vec{b}) \cdot \hat{\imath}\} \hat{\imath}+\{(\vec{a} \times \vec{b}) \cdot \hat{\jmath}\} \hat{\jmath}+\{(\vec{a} \times \vec{b}) \cdot \hat{k}\} \hat{k}\; \; \; \; \; \; \; \quad\left[\because\left[\begin{array}{lll} \vec{a} & \vec{b} & \vec{c} \end{array}\right]=\vec{a} \cdot(\vec{b} \times \vec{c})\right]

=\left (\overrightarrow{a}\times \overrightarrow{b} \right )                                                                                    \left[\begin{array}{l} \because(\vec{r} \cdot \hat{\imath}) \hat{\imath}+(\vec{r} \cdot \hat{\jmath}) \hat{\jmath}+(\vec{r} \cdot \hat{k}) \hat{k}=\vec{r} \\ \text { where } r \text { is any vector } \end{array}\right]

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads