Get Answers to all your Questions

header-bg qa

Provide solution for RD Sharma Maths Class 12 Chapter 25 Scale Triple Product Exercise Very Short Answer Question, question 4.

Answers (1)

Answer:

a=1, \frac{1}{2}

Hint:

Use scalar triple product formula.

Given:

 

Vectors \vec{\alpha}=\hat{\imath}+2 \hat{\jmath}+\hat{k}, \vec{\beta}=a \hat{\imath}+\hat{\jmath}+2 \hat{k} \text { and } \vec{\gamma}=\hat{\imath}+2 \hat{\jmath}+a \hat{k} are co planar.

Solution:

We have

\left.\begin{array}{l} \vec{\alpha}=\hat{\imath}+2 \hat{\jmath}+\hat{k} \\ \vec{\beta}=a \hat{\imath}+\hat{\jmath}+2 \hat{k} \\ \vec{\gamma}=\hat{\imath}+2 \hat{\jmath}+a \hat{k} \end{array}\right\}                         Eq.(i)

We know if three vectors are co planar then their scalar triple product is zero.

So, A/Q

α,β and γ are co planar then

\begin{aligned} &{\left[\begin{array}{lll} \vec{\alpha} & \vec{\beta} & \vec{\gamma} \end{array}\right]=0} \\ &\Rightarrow \vec{\alpha} \cdot(\vec{\beta} \times \vec{\gamma})=0 \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \quad[\because[\vec{a} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]=\vec{a} \cdot(\vec{b} \times \vec{c})] \\ &\Rightarrow(\hat{i}+2 \hat{j}+\hat{k}) \cdot\{(a \hat{i}+\hat{j}+2 \hat{k}) \times(\hat{i}+2 \hat{j}+a \hat{k})\}=0 \; \; \; \; \; \quad[\text { Using }(i)] \end{aligned}

\Rightarrow(\hat{i}+2 \hat{j}+\hat{k}) \cdot\left|\begin{array}{lll} \hat{i} & \hat{j} & \hat{k} \\ a & 1 & 2 \\ 1 & 2 & a \end{array}\right|=0

\Rightarrow(\hat{i}+2 \hat{j}+\hat{k}) \cdot\left\{\hat{i}(a-4)-\hat{j}\left(a^{2}-2\right)+\hat{k}(2 a-1)\right\}=0

\begin{aligned} \Rightarrow(a-4)(\hat{\imath} . \hat{\imath})-\left(a^{2}-2\right)(\hat{\imath} . \hat{\jmath})+(2 a-1)(\hat{\imath} . \hat{k})+2(a-4)(\hat{\jmath} \cdot \hat{\imath})-2\left(a^{2}-2\right)(\hat{\jmath} \cdot \hat{\jmath}) \\ +2(2 a-1)(\hat{\jmath} . \hat{k})+(a-4)(\hat{k} \cdot \hat{\imath})-\left(a^{2}-2\right)(\hat{k} \cdot \hat{\jmath})+(2 a-1)(\hat{k} \cdot \hat{k})=0 \end{aligned}

\begin{aligned} &\Rightarrow(a-4) \cdot 1-0+0+0-2\left(a^{2}-2\right) \cdot 1+0+0-0+(2 a-1) \cdot 1=0 \\ &{\left[\begin{array}{l} \because \hat{\imath} . \hat{\imath}=\hat{\jmath} \cdot \hat{\jmath}=\hat{k} \cdot \hat{k}=1, \hat{\imath} . \hat{\jmath}=\hat{\jmath} \cdot \hat{\imath}=0 \\ \hat{\imath} . \hat{k}=\hat{k} \cdot \hat{\imath}=0, \hat{\jmath} \cdot \hat{k}=\hat{k} \cdot \hat{\jmath}=0 \end{array}\right]} \end{aligned}

\begin{aligned} &\Rightarrow a-4-2 a^{2}+4+2 a-1=0 \\ &\Rightarrow-2 a^{2}+3 a-1=0 \\ &\Rightarrow 2 a^{2}-3 a-1=0 \\ &\Rightarrow 2 a^{2}-2 a-a-1=0 \\ &\Rightarrow 2 a(a-1)-1(a-1)=0 \\ &\Rightarrow(a-1)(2 a-1)=0 \\ &\Rightarrow a-1=0 \text { or } 2 a-1=0 \\ &\Rightarrow a=1 \text { or } a=\frac{1}{2} \end{aligned}

 

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads