Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 27 Straight Line in Space Exercise 27.2 Question 21 Maths Textbook Solution.

Answers (1)

Answer : the value of the \lambda will be \frac{10}{7}

Given: if the lines \frac{x-1}{-3}=\frac{y-2}{2 \lambda}=\frac{z-3}{2} \text { and } \frac{x-1}{3 \lambda}=\frac{y-1}{1}=\frac{z-6}{5} are perpendicular find the value of \lambda

Hint: Because lines are perpendicular

                So \vec{a}.\vec{b}=0

Solution:   \frac{x-1}{-3}=\frac{y-2}{2 \lambda}=\frac{z-3}{2} \text { and } \frac{x-1}{3 \lambda}=\frac{y-1}{1}=\frac{z-6}{5} are perpendicular that means they =’0

                So, \cos \theta =0

                \begin{aligned} &=(3 \lambda)(-3)+(2 \lambda)(1)+(2 \times 5)=0 \\\\ &=-9 \lambda+2 \lambda+10=0 \\\\ &=-7 \lambda=-10 \\\\ &\lambda=\frac{10}{7} \end{aligned}

so the value will be \frac{10}{7}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads