Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 27 Straight Line in Space Exercise 27.4 Question 12 Maths Textbook Solution.

Answers (1)

Answer - The answer of the given question is  \frac{x-7}{4}=\frac{y-4}{1}=\frac{z+1}{2}

(Hint – By using two point formula).

Given –  Line passing through the point A(0,6,-9) and B(-3,-6,3) and C (7,4,-1).

Solution – \frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}

Hence equation of line AB

\begin{aligned} &=\frac{x-0}{-3-0}=\frac{y-6}{-6-6}=\frac{z+9}{3+9} \\\\ &=\frac{x}{-3}=\frac{y-6}{-12}=\frac{z+9}{12}=\gamma(l e t) \\\\ &=x=-3 \gamma, y=-12 \gamma+6, z=12 \gamma-9 \\\\ &:: \text { Co-ordinates of point } D(-3 \gamma,(-12 \gamma+6),(12 \gamma-9) \end{aligned}

Hence,

Direction ratio of CD is

\begin{aligned} &=(-3 \gamma-7),(-12 \gamma+6-4),(12 \gamma-9+1) \\ &=(-3 \gamma-7),(-12 \gamma+2),(12 \gamma-8) \\ \end{aligned}

And by comparing with given line equation, direction ratios of the given line are

( Hint – denominator terms of line equation).

= (-3,-12,12)

CD  is perpendicular at the given line. Therefore, By “ Conditions of Perpendicularity”.

                                                                \begin{aligned} &a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0 \\ \end{aligned}

; whereas a terms and b terms are direction ratio of lines which are perpendicular to each other.

\begin{aligned} &=-3(-3 \gamma-7)+(-12)(-12 \gamma+2)+12(12 \gamma-8)=0 \\ &=9 \gamma+21+144 \gamma-24+144 \gamma-96=0 \\ &=297 \gamma-99=0 \\ &=\gamma=\frac{1}{3} \\ \end{aligned}

:: Co-ordinates of D,

By putting the value of \gamma  in D , we get

\begin{aligned} &(-3 \gamma),(-12 \gamma+6),(12 \gamma-9) \\ &=D\left[-3\left(\frac{1}{3}\right),\left(-12\left(\frac{1}{3}\right)+6\right),\left(12\left(\frac{1}{3}\right)-9\right)\right. \\ &=D\{-1,2,-5\} \end{aligned}

Hence, Equation of line

\begin{aligned} &=\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}} \\ &=\frac{x-7}{-1-7}=\frac{y-4}{2-4}=\frac{z+1}{-5+1} \\ &=\frac{x-7}{-8}=\frac{y-4}{-2}=\frac{z+1}{-4} \\ &=\frac{x-7}{4}=\frac{y-4}{1}=\frac{z+1}{2} \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads