Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 27 Straight Line in Space Exercise 27.4 Question 12 Maths Textbook Solution.

Answers (1)

Answer: the equation will be \frac{x-2}{1}=\frac{y+1}{2}=\frac{z+1}{3} which is parallel to \vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\lambda(\hat{i}+2 \hat{j}+3 \hat{k})

Given: find the vector equation of the line passing through the point (2,-1,-1) parallel to line 6x-2=3y+1=2z-2

Hint: for vector equation, \frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}

Solution: 6x-2=3y+1=2z-2

              6(x-1 / 3)=3(y+1 / 3)=2(z-1) \\

               =\frac{x-1 / 3}{1 / 6}=\frac{y+1 / 3}{1 / 3}=\frac{z-1}{1 / 2} \\

     D R=1 / 6,1 / 3,1 / 2=1,2,3

Now \frac{x-2}{1} =\frac{y+1}{2}=\frac{z+1}{3} \\

            \therefore \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k} \\

            \vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\lambda(\hat{i}+2 \hat{j}+3 \hat{k}) \\

So, the vector equation will be

\frac{x-2}{1}= \frac{y+1}{2}=\frac{z+1}{3}

 

 

 

 

 

 

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads