Get Answers to all your Questions

header-bg qa

Explain Solution R.D.Sharma Class 12 Chapter 27 Straight Line in Space Exercise 27.4 Question 13 Maths Textbook Solution.

Answers (1)

Answer – The answer of the given question is 7 units.

(Hint – By using cross product).

Given – Point (2,4,-1) and equation of line \frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}

Solution – Let Q be a point through which line passes. Thus for given equation of line co-ordinates of Q is Q(-5,-3,6).

Hence,

Line parallel to \vec{b}=\hat{i}+4\hat{j}-9\hat{k}

Now,

\begin{aligned} &=\overrightarrow{P Q}=(-5 \hat{\imath}-3 \hat{\jmath}+6 \hat{k})-(2 \hat{\imath}+4 \hat{\jmath}-\hat{k}) \\ &=\overrightarrow{P Q}=(-7 \hat{\imath}-7 \hat{\jmath}+7 \hat{k}) \\ \end{aligned}

Now, let’s find cross product of the two vectors.

=\vec{b} \times \overrightarrow{P Q}=\begin{vmatrix} \hat{i} & \hat{\hat{j}} & \hat{k}\\ 1 & 4 &-9 \\ -7 &-7 &7 \end{vmatrix}

                            

                        

\begin{aligned} &=\vec{b} \times \overrightarrow{P Q}=-35 \hat{\imath}+56 \hat{\jmath}+21 \hat{k} \\\\ &=\text { The magnitude of this cross product } \\\\ &=|\vec{b} \times \overrightarrow{P Q}|=\sqrt{1225+3136+441} \\\\ &=|\vec{b} \times \overrightarrow{P Q}|=\sqrt{4802} \end{aligned}

And magnitude of \vec{b}

\begin{aligned} &=|\vec{b}|=\sqrt{1+16+81} \\ &=|\vec{b}|=\sqrt{98} \\ \end{aligned}

Thus, distance of Point from line is

\begin{aligned} &=\mathrm{d}=\frac{|\vec{b} \times \overrightarrow{P Q}|}{|\vec{b}|} \\ &=\mathrm{d}=\frac{\sqrt{4802}}{\sqrt{98}} \\ &=\mathrm{d}=7 \text { units. } \end{aligned}

Posted by

infoexpert21

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads